FIRM QUALITY DYNAMICS AND THE SLIPPERY SLOPE OF CREDIT INTERVENTIONS

Authors:

Wenhao Li (USC) Ye Li (Ohio State)

Discussion:

Fabrice Tourre (Copenhagen Business School)

June 20, 2022

THE PAPER IN ONE SLIDE

Motivating question

 Distortions arising from capital injections by government onto firm quality distribution during crisis times

What the paper does

- "GE" model where main focus is on AK firms (type "H" and "L")
- investment as in Q-theory, subject to collateral constraint
- · Crisis: aggregate shocks, with heterogeneous destruction of capital
- Government support via equity funding w/o price discrimination

Key take-aways

- · Two sources of "cleansing" effects in laissez-faire
- · Government intervention:
 - beneficial effect onto aggregate capital stock;
 - detrimental effect onto composition of capital
- · Government distortion amplified via GE impact on capital prices

THE SETUP

- · Representative risk-neutral household consuming and investing
- AK Firms of two types: $A^{H} > A^{L}$; investment technology $F(\cdot)$
- Investment opportunities @ (idiosyncratic) Poisson rate λ_l
- Ideal investment $ec{\iota}_t^j := \left(\mathit{F'} \right)^{-1} (1/q_t^j)$; actual investment x_t^j
- Friction $\mathbf{x}_{t}^{j} \leq \chi \mathbf{q}_{t}^{j}$ not binding in normal times
- Number of shares issued to private sector $R_{M,t}^j(x_t^j) = x_t^j/q_t^j$
- Crisis @ (aggregate) Poisson rate λ ; $u_t \sim \textit{G}(\cdot)$ capital destroyed
- Crisis investment: $\iota_t^j(u_t) = \mathsf{x}_t^j(u_t) + g_t^j(u_t)$
- Friction $\mathbf{x}_t^j \leq \chi \mathbf{q}_t^j (\mathbf{1} \tilde{\mathbf{u}})$ binding for some firms during crisis
- Number of shares issued to government $R^j_{G,t}(g^j_t(u_t)) = g^j_t(u_t)\gamma_t$

PRELIMINARY COMMENTS ON THE SETUP

- · Title: "credit interventions"; in model, firms financed with equity only
- Crisis
 - · Infinitessimally short crisis duration
 - · Investment "boom" during crisis as all firms get to invest
 - How about Markov switching model with 2 states ("G" and "B")?
- · Government capital pricing is not type-specific;
 - Legit to assume cannot observe firm type
 - · However, quantity of funding demanded by firms reveals firm type
 - · Intervention where pricing is function of funding requested?
- Non-stationary equilibrium; in the long run, L firms "die"
 - Welfare analysis tricky to interpret, as dependent on the Markov state
 - Depending on speed of dynamic system, policy analysis not relevant in the long-run

CLEANSING EFFECT

• Law of motion for capital K_t and quality distribution $\omega_t = \frac{K_t^H}{K_t^H + K_t^L}$

$$\begin{split} \frac{dK_t}{K_{t-}} &= \lambda_I \left(\omega_{t-} F \left(\overline{\iota}_{t-}^H \right) + (1 - \omega_{t-}) F \left(\overline{\iota}_{t-}^L \right) \right) dt + \left(\omega_{t-} \Delta_t^H + (1 - \omega_{t-}) \Delta_t^L \right) dN_t \\ \frac{d\omega_t}{\omega_{t-}} &= \underbrace{\lambda_I (1 - \omega_{t-}) \left(F \left(\overline{\iota}_{t-}^H \right) - F \left(\overline{\iota}_{t-}^L \right) \right) dt}_{\text{Cleansing during normal time}} \\ &+ \underbrace{\left[\frac{1 + \Delta_t^H}{\omega_{t-} (1 + \Delta_t^H) + (1 - \omega_{t-}) (1 + \Delta_t^L)} - 1 \right] dN_t}_{\text{Cleansing during crisis times}} \end{split}$$

- Cleansing effect (1) via $q_t^H > q_t^L \Rightarrow x_t^H > x_t^L$
- Cleansing effect (2) via $\uparrow u \Rightarrow x_t(u) \downarrow$ (remember $x^j \leq \chi q^j (1 \tilde{u})$)
- Cleansing $\Rightarrow \omega_{t}$ drifts up (normal times) and jumps up (crisis times)

GOVERNMENT INTERVENTION

• With government, investment optimization is (typo in (23)?)

$$\max_{x,g}\left[q_{t}^{j}F(x+g)-x-q_{t}^{j}\gamma_{t}g\right]k_{t-}^{j}$$
 s.t.
$$x\leq\chi q_{t}^{j}\left(1-\tilde{u}\right)$$

- Investment depends on pricing of government funding $\gamma_t \lessgtr 1/q_t^I$
 - under-priced: no private sector funding and investment > laissez-faire
 - fairly-priced: investment = laissez-faire
 - · over-priced:
 - low \tilde{u} : only private sector funding and investment = laissez-faire;
 - intermediate \tilde{u} : only private sector funding and investment < laissez-faire;
 - high $\tilde{\textit{u}}$: both types of funding and investment < laissez-faire.

DISTORTION INTRODUCED BY GOVERNMENT INTERVENTION

- With intervention $\gamma \in [1/q^H, 1/q^L]$, government funding is:
 - underpriced for L firms ⇒ investment 100% funded by government
 - overpriced for H firms ⇒ investment funded by mix of private and public sector (depending on shock ũ)
- Government funding reduces cleansing effect:
 - L firms rely 100% on gvt funding so collateral constraint non-binding
 - increase in $q^L >$ increase in q^H
- Cheaper funding ($\downarrow \gamma$) leads to
 - $\uparrow \Delta^K$ (i.e. higher aggregate capital) but
 - $\downarrow \Delta^{\omega}$ (i.e. worse capital quality)
 - ullet \Rightarrow trade-off, optimal policy depends on firm quality distribution ω
- Government can price-discriminate:
 - · As if collateral constraint is eliminated
 - · First best achieved
 - · Cleansing effect weaker

OTHER THEMES

Welfare

- Welfare $W(\omega)K$ depends on the initial firm quality distribution ω ; ideally, build a stationary model so that you can evaluate $\mathbb{E}[W(\omega)K]$
- Dynamic interventions with $\gamma_t = \gamma(\omega_t)$: government pricing is conditional on the firm quality distribution
 - · How does that work when the government cannot observe types?
 - Dynamic γ optimization not too different from static optimization. Why?
 - Welfare improvements are minuscule. Why?
 - Why not focusing on $\gamma(g_t)$?

Cash holdings

- Decision to hold cash depends on costs/benefits
 - Cash incurs a carry cost
 - · Cash relaxes the investment collateral constraint
- Only H firms store cash (during crisis, L firms rely on government)
- Accumulation of cash? Capital convertible into cash?
- Sensitivity to the return on cash r_c vs. discount rate r

CONCLUSION

- The good stuff
 - Elegant, "pencil and paper" model whose economics is clear
 - Some clear existence, analytical and comparative static results
 - Exploring a topic that is otherwise under-explored: the GE impact of the "Fed put" onto prices and firm's behavior (what the authors refer to as the "expectations effect")
- The stuff I would re-think
 - · The title
 - Some of the modelling choices (crisis for instance)
 - The last 2 sections (liquidity and banks)
 - · More discussion on how to map model and data
 - More discussion on $\mathbf{x}^{j} \leq \chi \mathbf{q}^{j}$ (micro-foundation? what happens if $\mathbf{x}^{j} \leq \chi$?)