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Abstract

This paper examines the impact of unions on unemployment and wages in a dy-

namic equilibrium search model. We model a union as imposing a minimum wage

and rationing jobs to ensure that the union’s most senior members are employed.

This generates rest unemployment, where following a downturn in their labor mar-

ket, unionized workers are willing to wait for jobs to reappear rather than search for

a new labor market. We characterize the hazard rate of exiting unemployment, and

show that it is low at long durations whenever the union-imposed minimum wage

is high; we establish that a high union-imposed minimum wage generates a com-

pressed wage distribution and a high turnover rate of jobs — properties consistent

with the data. Finally, we show that seniority rules lead to lower unemployment

levels, relative to an alternative rule allocating jobs to workers randomly.
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1 Introduction

This paper examines the impact of unions on unemployment and wages. We model
a unionized labor market as one that imposes a minimum wage on employers and a
seniority rule to allocate jobs among members. In particular, if the minimum wage binds,
the union rations jobs to ensure that its most senior members are employed. Our focus
is on the implications of such a policy on workers’ decision to enter and exit unionized
labor markets, on the duration of unemployment spells, on the unemployment rate and
on wage compression. In our set-up, we abstract from any of the potentially beneficial
roles of unions, and hence the allocation in a unionized labor market is inefficient.1 We
find that for the same union wage premium, the use of seniority to allocate jobs relative
to using the commonly assumed random rule reduces unemployment and increases
efficiency. We prove that, in the presence of search frictions, a laid-off union member
will never immediately exit her labor market to search elsewhere for a job. Instead, she
will endure a spell of “rest” unemployment, meaning that she will remain idle waiting
for conditions to improve in her labor market and for more junior workers to exit. Thus,
the hazard rate of reentering employment generally declines during an unemployment
spell, so unionized workers will experience both frequent short spells and infrequent
long spells of unemployment.

Our modeling strategy follows Alvarez and Shimer (2011), who build on Lucas and
Prescott (1974). The economy consists of a large number of labor markets that produce
imperfect substitutes. There are many workers and firms in each labor market, so in the
absence of unions, wages and output prices are determined competitively within each
labor market. Productivity shocks induce workers to move between labor markets. We
begin by assuming that workers can move at no cost between labor markets.

Consider first the text-book model of unions. In the competitive sector, workers
earn a wage w∗. In the unionized sector, they earn a higher wage ŵ if employed, and
zero otherwise; if there is excess demand for jobs, these jobs are randomly allocated
to workers. In equilibrium, risk-neutral workers’ indifference between competitive and
unionized labor markets determines the unemployment rate u in the unionized sector:

1Our model fits into the “monopoly union” approach which stresses that unions may distort labor
market outcomes by raising wages and rationing jobs, and abstracts from the potentially beneficial effects
of unions, e.g. the “collective voice/institutional response” stressed by Freeman and Medoff (1984).
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u = 1 − w∗/ŵ, increasing in the wage in the unionized sector relative to that in the
competitive sector.

Consider then a unionized labor market with a seniority rule, according to which,
when there is excess demand of unionized jobs, employment is allocated to the senior-
most workers. We argue that this rule reduces unemployment in the unionized labor
market. When unions use seniority to allocate jobs, not all workers are equally likely to
be unemployed. The marginal worker — the worker with the lowest seniority — faces
the worst employment prospects. Infra-marginal workers, i.e. those with higher senior-
ity, are better off, either (i) ahead in the queue to get a job, or (ii) already employed.
With discounting, since the marginal worker’s payoff is back-loaded (relative to that of
the worker in a labor market governed by a random allocation rule), her indifference be-
tween locating in a unionized or competitive labor markets must reduce the equilibrium
unemployment rate, relative to the static textbook random assignment of jobs.

Our frictionless model is too stylized to address wage compression and properly
distinguish between workers who enter or exit a unionized labor market. We thus turn
to an extension of our model that includes search frictions. Similar to Alvarez and
Shimer (2011), we distinguish between rest and search unemployment. While in rest
unemployment, individuals do not work, enjoying a value of leisure higher than that of
working but lower than being outside the labor force. Moreover, the rest unemployed
retain the possibility of returning instantly and at no cost to the labor market where they
last worked. Search unemployment enables a worker to locate in any labor market.

We show that if a union has any effect, it generates rest unemployment. Whenever the
minimum wage ŵ binds, workers with low seniority who are rationed out of a job decide
to stay in the labor market, waiting for conditions to improve so that they can return to
work at the minimum wage. If conditions improve immediately after a worker has been
rationed out of a job, such worker re-enters employment quickly. When labor market
conditions are bad enough, workers with the lowest seniority and out of a job will leave
the unionized labor market and begin searching for work in more attractive markets.
Thus, our model delivers both many short but also few long spells of unemployment; in
general, the hazard rate of exiting unemployment is downward sloping.

The prospects of a labor market are limited by the fact that as conditions improve,
new workers will arrive via search. These newcomers will have the lowest seniority,
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and hence will be most vulnerable to bad shocks, but they will only arrive in a labor
market when it is booming. The situation of newcomers depends on how high the
minimum wage is. If it is not too high, so that it binds only for bad shocks, they will
immediately start working. If the minimum wage is sufficiently high, it always binds. In
that case, newcomers arrive when prospects are very good, but are forced to queue until
enough good shocks have arrived before they can start work. In such a labor market,
there is always a queue of workers waiting either to start or resume employment. Thus,
depending on the level of the union-mandated minimum wage, unionized labor markets
can exhibit either no wage dispersion — and hence maximum wage compression — for
very high minimum wage, or almost the same wage dispersion as competitive labor
markets, if the minimum wage is set low enough to rarely bind.

Finally, we consider a union that sets the wage, or equivalently the employment level,
at each instant in order to maximize the utilitarian welfare of all of its members, insiders
and outsiders. We find that such union opts for a minimum wage policy, where the
minimum wage is a constant markup over the marginal rate of substitution between the
leisure value of rest unemployment and consumption. By setting this minimum wage,
the union effectively restricts output so that it never exceeds the monopoly level. In
our framework, the difference between a monopoly producer and a monopoly union is
simply an issue of who keeps the monopoly rents.

Our paper is most similar to Alvarez and Shimer (2011), whose framework produces
rest unemployment, arising from the leisure advantage of resting over working. We
instead focus on the possibility that rest unemployment arises because of unionization
and binding minimum wages. In Alvarez and Shimer (2011), all workers within a labor
market are homogeneous, which means that the state, for a given worker, can be summa-
rized by a single variable, function of productivity and the number of workers in such
labor market. In this paper instead, union-mandated minimum wages and seniority
rules imply that low seniority workers contribute less to the representative household’s
welfare than high seniority workers; thus, not only do we need to keep track of the labor
market’s condition, but also the worker’s relative seniority, in order to understand their
entry and exit decisions. From a technical standpoint, this means we have to solve a par-
tial — rather than ordinary — differential equation to compute the worker’s contribution
to household welfare.
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Our paper connects with the literature that examines the impact of unions on labor
market outcomes. Using data on manufacturing firms at the state level, Medoff (1979)
argues that unionized firms lay off workers at a much higher rate than non-unionized
firms. Abraham and Medoff (1984) find evidence that seniority is an important deter-
minant of layoffs in unionized firms. Blau and Kahn (1983) and Tracy (1986) suggest
that seniority is also a factor in recall decisions of recently laid off or furloughed work-
ers. More recently, Böckerman, Skedinger and Uusitalo (2018) study, using data from
Finland and Sweden, how first-in-last-out rules affect layoff risks and wages, and find
that such seniority rules reduce dismissal of older and more senior workers. Fujita and
Moscarini (2017) document the importance of recalls of former employees after a jobless
spell, and suggest that recalls are much more prevalent among union members, provid-
ing empirical support for the duration dependence of our model-implied hazard rate
out of unemployment.

Jacobson, LaLonde and Sullivan (1993) document that workers displaced from heav-
ily unionized industries suffer unusually large and persistent income declines, consistent
with our model: in non-unionized labor markets, workers’ welfare is limited by the pos-
sibility of new entrants coming to the labor market, whereas in unionized labor markets,
high seniority workers are much better off than new entrants, leading to large welfare
losses when these senior workers are displaced. Adamopoulou, Díez-Catalán and Vil-
lanueva (2022) investigate the impact of wage rigidities arising from collective bargain-
ing agreements on labor market outcomes during recessions in Spain; they show that job
losses in low-inflation recessions are entirely driven by workers with wages close to min-
imum floors set by collective bargaining agreements, echoing our theoretical conclusions
that high minimum wages set by unions tend to increase average unemployment.

Our model also addresses a large literature arguing that unions compress wages.
Blau and Kahn (1996) and Mourre (2005) document that wages in the U.S. are more
dispersed than in other developed economies, and argue that this is due to the absence
of centralized wage-setting mechanisms. Bertola and Rogerson (1997) show that such
centralized wage setting mechanisms in Europe lead to wage compression whose effects
on job creation and destruction rates is opposite that of restrictions on turnover; in our
model, unions only affect labor market institutions by compressing wages, leading to a
positive relationship between unemployment rates and wage compression.
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Our approach to modeling unemployed union members as rest unemployed is re-
lated to that of Harris and Todaro (1970), who propose an extreme version of “wait
unemployment” in less developed countries. When rural workers move to the city, they
must queue for a job before they can start working. They are willing to do so even though
the marginal product of labor is positive in the countryside. These findings are consis-
tent with the version of our model with high — and always binding — minimum wage:
unemployed individuals entering a new labor market have to wait for productivity to
increase, and for their relative seniority to rise sufficiently, until they eventually reach
the gates of the factory and get employed. Many of the forces driving the size of a labor
market and unemployment in our framework — seniority rule, the ability for workers
to “vote with their feet” and leave a labor market, entry whenever there is excess de-
mand, indifference of the most junior worker between (i) the wage-and-unemployment
probability package within a unionized labor market and (ii) employment opportunities
elsewhere — can also be found in Grossman (1983), who studies a similar question but
instead assumes that unions maximize the value of the median worker.

Although it is not our main focus, our paper gives a novel perspective on why unions
might choose to raise wages above the market-clearing level. Many authors — see for in-
stance Freeman and Medoff (1984) — have recognized that this may be optimal for more
senior union members who are protected from the risk of layoff. Blanchard and Sum-
mers (1986) argue for an “insider-outsider” theory of European unemployment, where
unions run by insiders generate unemployment because wages are set to exclude disen-
franchised outsiders. We find that a union that cares equally about insiders and outsiders
opts for a minimum wage policy: unions may generate unemployment not because more
senior members may have an undue influence on wage setting procedures, but rather
because they can only raise the well-being of all their members by constraining output
in some states of the world. Finally, our model is consistent with the finding in Nickell
and Layard (1999) that unions raise the unemployment rate only in countries where they
cannot effectively coordinate their bargaining. In our model, the equilibrium without
unions is Pareto optimal. While any individual union can improve its workers’ well-
being through a minimum wage, all workers are better off if unions do not exploit their
monopoly power. Thus if unions can collude, they would be able to avoid generating
rest unemployment.
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2 Frictionless Model

We consider a continuous time, infinite-horizon model. We focus for simplicity on an
aggregate steady state and assume markets are complete. Much of our analysis will
focus on a specific labor market, which may or may not be unionized. A unionized labor
market in our framework can be thought of as either (i) an industry whose workers
are represented by a union — for instance, most of the workers of the largest three car
manufacturers are unionized and represented by the United Auto Workers — or (ii)
an occupation, and workers within that occupation are represented by a union — for
example school teachers, who are represented by the American Federation of Teachers.

2.1 Goods

There is a continuum of goods indexed by j ∈ [0, 1] and a large number of competitive
producers of each good. Each good is produced in a separate labor market with a con-
stant returns to scale technology that uses only labor. In a typical labor market j at time
t, there is a measure ℓ(j, t) of workers. Of these, e(j, t) are employed, each producing
Ax(j, t) units of good j, while the remaining ℓ(j, t)− e(j, t) are rest-unemployed. Com-
petition forces firms to price each good at marginal cost, so the wage in labor market j,
w(j, t), is equal to (a) the price of good j, p(j, t), times (b) the productivity of each worker
in labor market j, Ax(j, t). A is the aggregate component in productivity while x(j, t) is
an idiosyncratic shock that follows a geometric Brownian motion,

d ln x(j, t) = µxdt + σxdz(j, t), (1)

where µx measures the drift of log productivity, σx > 0 measures the volatility, and z(j, t)
is a standard Wiener process, independent across goods.

To keep a well-behaved distribution of labor productivity, the market for good j shuts
down according to a Poisson process with arrival rate δ, independent across goods and
independent of productivity. When this shock hits, all the workers are forced out of the
labor market. A new good, also named j, enters with positive initial productivity x ∼
F(x), keeping the measure of goods constant. We assume a law of large numbers, so the
share of labor markets experiencing any particular sequence of shocks is deterministic.
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2.2 Households

There is a representative household consisting of a measure 1 of members. The large
household structure allows for full risk sharing within each household, a standard device
for studying complete markets allocations. At each time t, the representative household
allocates each of her members to one of the following mutually exclusive activities:

• L(t) household members are located in one of the labor markets.

– E(t) of these workers are employed at the prevailing wage and get leisure 0.

– Ur(t) = L(t)− E(t) of these workers are rest-unemployed and get leisure br.

• The remaining 1 − E(t)−Ur(t) household members are inactive, getting leisure bi.

We assume br < bi, so rest unemployment gives less leisure than inactivity. Household
members may costlessly move between these three states. However, whenever they enter
(or reenter) a market, they start with the lowest level of seniority. In addition to the
endogenous decision to leave a market, we allow for two other exogenous reasons why
a worker might exit her labor market. First, a given labor market shuts down at rate δ.
Second, the worker might be hit by an idiosyncratic shock, which occurs according to
a Poisson process with arrival rate q, independent across individuals and independent
of their labor market’s productivity. We introduce the idiosyncratic “quit” shock q to
account for separations that are unrelated to the state of the labor market. We represent
the household’s preferences via the utility function∫ ∞

0
e−ρt (ln C(t) + bi

(
1 − E(t)− Ur(t)

)
+ brUr(t)

)
dt, (2)

with ρ > 0 the discount rate and C(t) the household’s consumption of a composite good

C(t) =
(∫ 1

0
c(j, t)

θ−1
θ dj

) θ
θ−1

, (3)

and c(j, t) the consumption of good j at time t. We assume that the elasticity of substitu-
tion between goods, θ, is greater than 1. The cost of this consumption is

∫ 1
0 p(j, t)c(j, t)dj,

which we assume the household finances using its labor income. Standard arguments
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imply that the demand for good j satisfies

c(j, t) =
C(t)P(t)θ

p(j, t)θ
, (4)

where

P(t) =
(∫ 1

0
p(j, t)1−θdj

) 1
1−θ

(5)

is the price index, normalized to 1. To ensure a well-behaved distribution of wages, we
impose two restrictions on preferences and technology. First, we require

δ > (θ − 1)
(

µx +
1
2(θ − 1)σ2

x

)
, (6)

so labor markets shut down sufficiently quickly to offset the drift in the stochastic process
for productivity; this is a necessary and sufficient condition to guarantee that aggregate
consumption is strictly positive and finite. Second, we require

X ≡
(∫ ∞

0
xθ−1dF(x)

) 1
θ−1

∈ (0, ∞), (7)

a restriction on the productivity distribution in new labor markets. If this condition
failed, the wage would be either zero or infinite.

2.3 Unions

Unions constrain the wage in labor market j, introducing a restriction w(j, t) ≥ ŵ(j). For
most of our analysis, we treat the minimum wage ŵ(j) as exogenous and consider its
consequences. To see whether the minimum wage constraint binds, first note that if all
the workers in the labor market were employed, they would produce Ax(j, t)ℓ(j, t) units
of good j. Inverting the demand curve (4) and eliminating the price level using P(t) = 1,
the relative price of good j would be

p(j, t) =
(

C(t)
Ax(j, t)ℓ(j, t)

) 1
θ

.
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The wage in the labor market would then be p(j, t)Ax(j, t) or

w(j, t) =

(
C(t)

(
Ax(j, t)

)θ−1

ℓ(j, t)

) 1
θ

, (8)

increasing in productivity and decreasing in the number of workers. If there are too
many workers in such labor market, the minimum wage constraint binds. In that case,
w(j, t) = ŵ(j) and employment e(j, t) is determined at the level that makes the price of
good j equal to ŵ(j)/Ax(j, t),

e(j, t) =
C(t)

(
Ax(j, t)

)θ−1

ŵ(j)θ
, (9)

increasing in productivity and decreasing in the minimum wage.
We assume that when the minimum wage constraint binds, more senior workers

have the first option to work, where seniority is measured by the elapsed time since the
worker last entered the labor market. Consider a worker with relative seniority s ∈ [0, 1],
where we measure relative seniority s as the percentage of workers in the labor market
with lower seniority, so s = 1 corresponds to the worker with the greatest seniority. She
is employed if and only if e(j, t)/ℓ(j, t) ≥ 1 − s or, from (9),

s ≥ 1 −
C(t)

(
Ax(j, t)

)θ−1

ŵ(j)θℓ(j, t)
. (10)

A worker with a given seniority is more likely to be employed when productivity is
higher, the minimum wage is lower, or the number of workers in the labor market is
smaller.

Since workers are typically not indifferent about working, those with more seniority
provide more utility to the representative household. Thus to analyze a worker’s de-
cision to enter or stay in a labor market, we need to examine not only the behavior of
wages in the market, but also how the entry and exit of other workers influences each
worker’s seniority.
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2.4 Equilibrium

We look for a competitive equilibrium of this economy, subject to the constraints imposed
by minimum wages. At each instant, each household chooses how much of each good
to consume and how to allocate its members between employment, rest unemployment,
and inactivity, in order to maximize utility subject to the constraints imposed by seniority
rules; and each goods producer j maximizes profits by choosing how many workers to
hire taking as given the wage in its labor market and the price of its good. The demand
for labor from goods producers is equal to the supply from households in each market
unless the minimum wage constraint binds, in which case labor demand may be less
than labor supply; and households’ demand for goods is equal to the supply from firms.
We focus on parameter values for which the household keeps some of its members
inactive, which requires that the leisure value of inactivity bi is sufficiently large.

We look for a stationary equilibrium where all aggregate quantities and prices are
constant, as is the joint distribution of wages, productivity, output, employment, and rest
unemployment across labor markets. We suppress the time argument as appropriate in
what follows. With identical households and complete markets, consumption is equal
to current labor income and hence we also ignore financial markets.

2.5 Characterization

In this section, we prove that the number of workers in labor market j satisfies

ℓ(j, t) =
C
(

Ax(j, t)
)θ−1

w̄(j)θ
(11)

for some constant w̄(j), where C is the constant level of consumption. We also charac-
terize w̄(j). In unionized markets with a binding minimum wage ŵ(j), we prove that
w̄(j) < ŵ(j). Equation (10) then implies that a worker is employed if and only if

s ≥ 1 −
(

w̄(j)
ŵ(j)

)θ

≡ ŝ(j) ∈ (0, 1). (12)
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The unemployment rate in labor market j is equal to ŝ(j). In labor markets where the
minimum wage ŵ(j) is not binding, w̄(j) = w∗, a constant that satisfies w∗ ≥ ŵ(j). All
workers are employed and have the same expected utility, regardless of their seniority.
In what follows, we suppress the name of the labor market j.

2.5.1 Non-unionized labor market

First, consider a non-unionized labor market. Regardless of the sequence of shocks
hitting the labor market, a worker must earn a constant wage w∗ and is always employed.
Indeed, we have assumed an equilibrium in which some members of the household are
inactive. Since the household can freely move workers between inactivity and a job in
a non-unionized labor market, it must be indifferent between the two activities. An
inactive worker contributes bi utils to the household, while a worker employed at w∗

contributes w∗/C, since the marginal utility of consumption is 1/C. Thus, we must have
w∗ = biC. As long as the minimum wage is smaller than this level, ŵ ≤ w∗, it does
not bind. As a labor market with a non-binding minimum wage is hit by productivity
shocks, the number of workers varies according to (11), while the wage stays constant
at w∗. The workers in such labor markets move between inactivity and employment as
necessary while avoiding any unemployment spells.

2.5.2 Unionized labor market

Now consider the case where ŵ > w∗ = biC. The analysis in the previous paragraph is
inapplicable because the minimum wage is binding. We conjecture that in equilibrium
a worker’s value in a labor market with a binding minimum wage depends only on her
relative seniority v(s), where s ∈ [0, 1] is the fraction of workers with lower seniority. A
worker exits a labor market (i) at the time τ(0) when her seniority s(t) falls to 0 and the
labor market is hit by an adverse shock, (ii) at the time τq she is hit by an exogenous
quit shock, or (iii) at the time τδ her labor market shuts down. She works and earns
the minimum wage ŵ whenever her seniority exceeds the threshold defined in (12) for
some value of w̄ < ŵ to be determined; whenever the worker’s seniority is below the
threshold, she is rest unemployed, with flow utility br. In other words, the per-period
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worker’s flow payoff is R(s), defined via

R(s) =

br if s < ŝ

ŵ/C if s ≥ ŝ.
(13)

The value function v(s) can then be expressed via:

v(s) = Es

[∫ τ(0)∧τδ∧τq

0
e−ρtR (s(t)) dt + e−ρ(τ(0)∧τδ∧τq) bi

ρ

]
, (14)

where expectations are taken with respect to the stopping times τ(0), τδ, τq, and the path
of the state s(t) prior to the stopping time, where ∧ is the minimum operator, and where
the subscript Es means that we condition on the initial state being s(0) = s.

Whenever a productivity shock d ln x(t) occurs, the measure of employed workers
e(t) adjusts according to (9), such that d ln e(t) = (θ − 1)d ln x(t). Since we postulated
a constant employment rate within such labor market, e(t)/ℓ(t) must stay constant,
implying that d ln ℓ(t) = (θ − 1)d ln x(t), in other words workers leave such labor market
(if d ln x(t) < 0) or arrive (if d ln x(t) > 0). These comments allow us to determine the
dynamics of the seniority level s(t) of a particular individual in a particular labor market
at time t. Supposed s(t) ∈ (0, 1). This means that there is a measure s(t)ℓ(t) of workers
with seniority lower than the seniority of that particular individual in such labor market.
Let us assume that between t and t+ dt, productivity shocks lead to a change dℓ(t) in the
measure of workers in this particular labor market. Conditioning on the labor market
not shutting down and on the worker not being hit by a quit shock, the change in the
measure of workers junior to the particular individual must then verify:

d (s(t)ℓ(t)) = dℓ(t) + qℓ(t) (1 − s(t)) dt (15)

The first term on the right-hand side corresponds to the change in workers junior to a
given worker arising from endogenous entry and exits following productivity shocks,
while the second term relates to exogenous quits. Since in our assumed equilibrium,
d ln ℓ(t) = (θ − 1)d ln x(t), using Itô’s lemma (see Appendix A.1.1) enables us to identify
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the dynamics of the seniority of a particular individual:

ds(t) = (1 − s(t))
[

q + (θ − 1)
(

µx −
1
2
(θ − 1)σ2

x

)]
dt + (1 − s(t))(θ − 1)σxdz(t) (16)

Thus, 1 − s(t) follows geometric Brownian motion dynamics with log-normal drift rate
−q − (θ − 1)

(
µx − 1

2(θ − 1)σ2
x

)
and log-normal volatility (θ − 1)σx.

Consider then the boundary behavior of v. Since workers with zero seniority are free
to leave a unionized labor market to join a competitive labor market, v(0) must be equal
to the reservation value bi/ρ. Since the timing of labor market entry and exit is chosen
optimally (see Appendix A.1.4), we must have the smooth pasting condition v′(0) = 0.
Similarly, Brownian shocks dz(t) smooth the value function at the threshold s = ŝ, and
lastly s = 1 is an absorbing state, which allows us to determine the value of the senior-
most worker. Together with the state dynamics, these boundary conditions allow us to
solve for the value function v analytically (see Appendix A.1.3):

Proposition 1. Let λ ≡ q+ δ be the exogenous rate at which workers exit labor markets.
Let η1 < 0 < 1 < η2 be the roots of the characteristic equation

1
2
(θ − 1)2σ2

x η2 + (q + (θ − 1)µx) η − (ρ + λ) = 0. (17)

Equation (A3) in Appendix A.1.3 gives a closed form solution for the worker’s value
function. In equilibrium, the unemployment rate in a given market is constant and
equal to

ŝ = 1 −
(

w∗ − brC
ŵ − brC

) 1
η2

= 1 −
(

w̄
ŵ

)θ

. (18)

The number of workers ℓ(t) varies with productivity according to Equation (11), where

w̄ = ŵ
(

w∗ − brC
ŵ − brC

) 1
θη2

< ŵ. (19)
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2.6 Unemployment

Equation (18) describes the unemployment rate ŝ in a labor market with minimum wage
ŵ ≥ w∗. It is equal to 0 if ŵ ≤ w∗ and is then increasing in the minimum wage ŵ.
To understand the magnitude of unemployment, compare this to a hypothetical labor
market with a minimum wage but where jobs are allocated randomly, not based on
seniority. If a worker enters such a labor market, she is employed at the minimum wage
ŵ with probability 1 − u and rest-unemployed otherwise. Since a household must be
indifferent between sending a worker to such a labor market and sending the worker to
a competitive labor market, we have

w∗/C = (1 − u)ŵ/C + ubr ⇒ u = 1 − w∗ − brC
ŵ − brC

.

Since ŵ > w∗ = biC > brC, this defines u ∈ (0, 1). And since η2 > 1, we can immediately
conclude with the following corollary.

Corollary 1. The unemployment rate with seniority rule is lower than with a random
allocation of jobs to workers, u > ŝ.

Relative to a random assignment rule, the seniority rule backloads the worker’s pay-
off into the future. With discounting — either stemming from the impatience parameter
ρ, the quit rate q, or the labor market shut down rate δ — this backloading lowers the
utility of newcomers in a labor market, so long as the incentive to queue is not too strong.
To preserve the indifference for a newcomer between inactivity and queuing into a new
labor market, the equilibrium unemployment rate must be lower.2

With a random assignment of jobs to union members, the unemployment rate de-
pends only on the leisure from inactivity and rest unemployment and the real wage

2Our argument depends on the strength of the incentive to queue in a labor market with seniority rule,
relative to that in a labor market with random allocation of jobs to workers. That incentive depends on how
the seniority rule affects future employment in the labor market. In the limit case without discounting,
ρ = 0, if the number of workers ℓ(t) and employment e(t) in a labor market are martingales, the value for a
newcomer in a labor market with seniority rule is identical to their value if jobs are assigned randomly, so
the unemployment rates in the seniority rule and random allocation models must be identical. Condition
(6) insures that the number of workers and employment in a labor market are supermartingales. This
means that work is backloaded with seniority rules, and so the incentive to queue is lower than in an
economy with a random allocation of jobs to workers, even without any discounting.
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ŵ/C. With seniority rule, other preference and technology parameters also affect a labor
market’s unemployment rate through their effect on η2; (18) implies that any parameter
which raises η2 reduces the unemployment rate.3

Proposition 2. The unemployment rate ŝ is decreasing in (a) the discount rate ρ and
(b) the labor market shut-down rate δ. It is increasing in (a) the quit rate q, (b) the
productivity drift µx, and (c) the elasticity of substitution θ. Keeping the log-normal
drift rate of the number of workers ℓ(j, t) in labor market j constant, an increase in
productivity volatility σx increases the unemployment rate.

Greater impatience ρ or a higher labor market shut-down rate δ leads to more ef-
fective discounting, which raises η2 and hence reduces the unemployment rate. The
intuition for this comparative static is similar to that discussed in Corollary 1: since
marginal workers are always unemployed, an increase in effective discounting implies
that workers weigh current unemployment more heavily than the future possibility of
employment and so are less inclined to stay in the labor market.

A higher quit rate q has two offsetting effects on the unemployment rate. On the
one hand, a higher q leads to greater effective discounting, which pushes unemploy-
ment rate lower; on the other hand, a higher q means that a worker’s seniority grows
more rapidly, making such labor market more attractive, thereby raising unemploy-
ment rate; under condition (6), this latter force prevails. Similarly, higher productivity
drift µx raises the unemployment rate, since it also increases the attractiveness of the
labor market. A greater elasticity of substitution θ raises the unemployment rate be-
cause it amplifies the impact of any productivity shock. Finally, keeping the drift rate
of the number of workers in labor market j constant means that we fix Et [dℓ(j, t)] =[
(θ − 1)µx +

1
2 (θ − 1)2 σ2

x

]
dt. In such case, an increase in productivity volatility in-

creases a worker’s option value of waiting to see how productivity evolves, thus raising
unemployment. None of these possibilities are present in the static model.

Finally, we note that we can easily “close” our model by leveraging equations (11)
3The discussion in this paragraph and the next two paragraphs is loose because we implicitly assume

that a change in parameters does not affect the level of consumption C. In the next section, we extend the
model to have many labor markets and allow these parameters to differ across markets. If we followed
a similar approach here, the comparative statics with respect to λ, µx, σx, and θ would be relevant in the
cross-section. Alternatively, one can assume br = 0, in which case our comparative static results do not
depend on equilibrium aggregate consumption C.
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and (19) to obtain an expression for c(j, t) as a function of the minimum wage and of
w∗ = biC, and then use the household’s composite consumption bundle (3) to obtain
an implicit equation that C needs to satisfy in equilibrium. We provide those detailed
calculations in Appendix A.1.5.

3 Full Model

We now extend the model by introducing search frictions. While workers can costlessly
move between employment and rest unemployment within a labor market, we assume it
takes time to move between markets. This changes our results along several dimensions.

First, productivity shocks cause wage fluctuations within labor markets since search
frictions prevent costless arbitrage of any wage differences across markets. With wage
fluctuations, we interpret unions as imposing a minimum wage ŵ and a seniority rule,
rather than just a fixed wage. Following a positive sequence of productivity shocks, the
minimum wage constraint may be slack and all the union members employed. More
generally, in the presence of search frictions some markets may be more attractive than
others, even for a worker without seniority.

Second, workers need not experience a spell of unemployment when they enter a
market. Workers enter markets with a moderate minimum wage at times when the
minimum wage constraint does not bind. This allows them to start a job immediately.
But when their market is hit by an adverse shock, they will not immediately exit. Instead,
we prove that they will always experience a spell of rest unemployment before exiting.
In this sense, rest unemployment is associated with declining unionized labor markets.
Still, for a sufficiently high minimum wage relative to the search frictions, the minimum
wage will always bind and so the market will always have some unemployment.

Finally, search frictions lead to the notion of workers “attached” to a labor market.
This allows us to consider the objective function of a union that represents those workers.

We also extend the model along another dimension. We assume there are many
sectors that produce relatively poor substitutes. Within each sector, there are many
labor markets producing goods that are relatively easily substituted. This facilitates
comparative statics at the cost of somewhat more cumbersome notation.
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3.1 Goods

There is a continuum of sectors indexed by n ∈ [0, 1]. Within each sector, there is a
continuum of goods indexed by j ∈ [0, 1] and a large number of competitive produc-
ers of each good. Thus nj is the name of a particular good produced in a particular
labor market. The model from the previous section applies within each sector, although
parameters may differ across sectors. In labor market nj at time t, there is a measure
e(nj, t) employed workers, each of whom produce Ax(nj, t) units of good nj. There are
also ℓ(nj, t)− e(nj, t) rest-unemployed workers. Workers are paid their marginal prod-
uct, so the wage in market nj solves w(nj, t) = p(nj, t)Ax(nj, t), where p(nj, t) is the price
of good nj.

A is the aggregate component in productivity while x(nj, t) is an idiosyncratic shock
that follows a geometric random walk with sector-specific drift µn,x and sector-specific
standard deviation σn,x:

d ln x(nj, t) = µn,xdt + σn,xdz(nj, t). (20)

As before, the market for good nj shuts down at Poisson times with arrival rate δn,
independent across goods and productivity. When this shock hits, all the workers are
forced out of the labor market. A new good, also named nj, enters with positive initial
productivity x ∼ Fn(x), keeping the measure of goods in sector n constant. We assume
a law of large numbers, so the share of labor markets in each sector experiencing any
particular sequence of shocks is deterministic.

3.2 Households

There is a representative household consisting of a measure 1 of members. At each
moment in time t, the representative household allocates each of her members to one of
the following mutually exclusive activities:

• L(t) household members are located in one of the labor markets.

– E(t) of these workers are employed at the prevailing wage and get leisure 0.

– Ur(t) = L(t)− E(t) of these workers are rest-unemployed and get leisure br.
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• Us(t) household members are search-unemployed, looking for a new labor market
and getting leisure bs.

• The remaining 1 − E(t) − Ur(t) − Us(t) household members are inactive, getting
leisure bi.

We assume bi > bs but no longer impose bi > br. Household members may costlessly
switch between employment and rest unemployment and between inactivity and search-
ing; however, they cannot switch labor markets without going through a spell of search
unemployment. Workers exit their labor market for inactivity or search in three circum-
stances: first, they may do so endogenously at any time at no cost; second, they must
do so when their market shuts down, which happens at rate δn; and third, they must
do so when they are hit by an idiosyncratic shock, according to a Poisson process with
arrival rate qn, independent across individuals and independent of their labor market’s
productivity. Finally, a worker in search unemployment finds a job according to a Pois-
son process with arrival rate α. When this happens, she may enter the labor market of
her choice. We represent the household’s preferences via the utility function∫ ∞

0
e−ρt (ln C̄(t) + bi

(
1 − E(t)− Ur(t)− Us(t)

)
+ brUr(t) + bsUs(t)

)
dt, (21)

where ρ > 0 is the discount rate and C̄(t) is the household’s consumption of an aggregate
of all goods produced across sectors,

ln C̄(t) =
∫ 1

0
ln C(n, t)dn, (22)

C(n, t) is the household’s consumption of an aggregate of goods produced in sector n,

C(n, t) =
(∫ 1

0
c(nj, t)

θn−1
θn dj

) θn
θn−1

, (23)

and c(nj, t) is the consumption of good nj at time t. We assume that the elasticity of
substitution between goods in sector n, θn, is greater than 1. The cost of this consump-
tion is

∫ 1
0

∫ 1
0 p(nj, t)c(nj, t)djdn, which we assume the household finances using its labor

income.
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Standard arguments imply that the demand for good nj satisfies

c(nj, t) =
C(n, t)P(n, t)θn

p(nj, t)θn
, (24)

where

P(n, t) =
(∫ 1

0
p(nj, t)1−θn dj

) 1
1−θn

(25)

is the price index in sector n. The demand for the consumption aggregator in sector n
satisfies

C(n, t) =
C̄(t)

P(n, t)
, (26)

where we use the price of the aggregate consumption bundle C̄ as numeraire, or equiv-
alently normalize ∫ 1

0
ln P(n, t)dn = 0. (27)

To ensure a well-behaved distribution of wages in each labor market, we impose two
restrictions on preferences and technology, generalizations of equations (6) and (7):

δn > (θn − 1)
(
µn,x +

1
2
(θn − 1)(σn,x)

2) (28)

Xn ≡
(∫ ∞

0
xθn−1dFn(x)

) 1
θn−1

∈ (0, ∞). (29)

3.3 Unions

Unions constrain the wage in sector n, introducing a restriction w(nj, t) ≥ ŵ(n). To see
whether the minimum wage constraint binds, first note that if all the workers in the labor
market were employed, they would produce Ax(nj, t)ℓ(nj, t) units of good nj. Inverting
the demand curve (24) and eliminating the price of labor market n using (26), the relative
price of good nj would be

p(nj, t) =
C̄(t)

C(n, t)
θn−1

θn
(

Ax(nj, t)ℓ(nj, t)
)1/θn

.
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The wage in the labor market would then be p(nj, t)Ax(nj, t) or

w(nj, t) =
C̄(t)

(
Ax(nj, t)

) θn−1
θn

C(n, t)
θn−1

θn ℓ(nj, t)
1

θn

. (30)

This is increasing in the productivity of the labor market and decreasing in the number
of workers. In particular, if there are too many workers in the market, the minimum
wage constraint binds. In that case, w(nj, t) = ŵ(n) and employment is determined at
the level that makes the price of good nj equal to ŵ(n)/Ax(nj, t),

e(nj, t) =
C̄(t)θn

(
Ax(nj, t)

)θn−1

C(n, t)θn−1ŵ(n)θn
, (31)

increasing in productivity and decreasing in the minimum wage. We continue to assume
that when the minimum wage constraint binds, more senior workers have the first option
to work. When the minimum wage binds, a worker with relative seniority s works if and
only if

s ≥ 1 −
C̄(t)θn

(
Ax(nj, t)

)θn−1

C(n, t)θn−1ŵ(n)θnℓ(nj, t)
. (32)

3.4 Equilibrium

A competitive equilibrium of this economy is defined similarly to that of the previous
section. At each instant, each household chooses how much of each good to consume
and how to allocate its members across different activities (employment, rest unem-
ployment, search unemployment, and inactivity) in order to maximize utility subject to
technological constraints, taking as given the behavior of wages and seniority in each
labor market; and each goods producer nj maximizes profits by choosing how many
workers to hire taking as given the wage in its labor market and the price of its good.
Demand for labor from goods producers is equal to the supply from households in each
market unless the minimum wage constraint binds, in which case labor demand may
be less than labor supply; and households’ demand for goods is equal to the supply
from firms. We focus on a stationary equilibrium where all aggregate and sector-specific
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quantities and prices are constant, as is the joint distribution of wages, productivity, out-
put, employment, and rest unemployment across labor markets. We continue to assume
complete markets.

4 Characterization of Equilibrium

At any point in time, a typical labor market nj is characterized by its productivity x and
the number of workers ℓ. We look for an equilibrium in which the ratio xθn−1/ℓ follows
a Markov process. Workers enter labor markets when the ratio exceeds a threshold and
exit labor markets when it falls below a strictly smaller threshold. Moreover, (32) shows
that this ratio and a worker’s seniority determines whether she has the option to work.

4.1 The Marginal Value of Household Members

We start by computing the marginal value of an additional household member engaged
in each of the three activities. These are related by the possibility of reallocating house-
hold members between activities. Consider first a household member who is perma-
nently inactive. It is immediate from (21) that she contributes

v =
bi

ρ
(33)

to household utility. Since the household may freely shift workers between inactivity and
search unemployment, this must also be the incremental value of a searcher, assuming
some members are engaged in each activity. A searcher gets flow utility bs and the
possibility of finding a labor market at rate α, giving capital gain v̄ − v, where v̄ is the
value to the household of having a worker enter the best labor market. This implies
ρv = bs + α (v̄ − v) or

v̄ = v + biκ, where κ ≡ bi − bs

biα
(34)

is a measure of search costs, the percentage loss in current utility from searching rather
than inactivity times the expected duration of search unemployment 1/α. Conversely,
a worker may freely exit her labor market, and so the lower bound on the value of a
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household member in a labor market, either employed or search unemployed, is v. If
the household values a worker at some intermediate amount, it will be willing to keep
her in her labor market rather than having her search for a new one.

Finally, consider the margin between employment and resting for a worker in a labor
market paying a wage w. A resting worker generates br utils while an employed worker
generates income valued at w/C̄, where 1/C̄ is the marginal utility of the consumption
aggregate. Since switching between employment and resting is costless, all workers
prefer to work in any labor market with w/C̄ > br and prefer to rest in any market
with w/C̄ < br. This implies that if ŵ/C̄ ≤ br, the minimum wage never binds because
workers’ willingness to enter rest unemployment endogenously keeps the wage above
ŵ. Conversely, if ŵ/C̄ > br, the minimum wage may sometimes bind.

4.2 Wage and Labor Force Dynamics

Consider a labor market n with ℓ workers, productivity x, and a minimum wage ŵ. Let
P(ℓ, x) be the price of its good, Q(ℓ, x) the amount of the good produced, W(ℓ, x) the
wage rate, and E(ℓ, x) the number of workers who are employed. Competition ensures
that the wage is equal to the marginal product of labor, W(ℓ, x) = P(ℓ, x)Ax, while the
production function implies Q(ℓ, x) = E(ℓ, x)Ax. From (30), the wage solves

W(ℓ, x) = C̄ max{eω̂, eω} (35)

where
ω ≡ (θn − 1)(ln(Ax)− ln C(n))− ln ℓ

θn
, (36)

is the logarithm of the “full-employment wage” measured in utils, the wage that would
prevail if there were full employment in the labor market and

ω̂ ≡ max{ln ŵ − ln C̄, ln br} (37)

is the maximum of the log minimum wage (in utils) and the utility from rest unemploy-
ment. From (31), employment is E(ℓ, x) = ℓeθn(ω−ω̂) if the minimum wage binds, ω < ω̂,
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and ℓ otherwise. Hence the amount of the good produced is

Q(ℓ, x) = ℓAx min{1, eθn(ω−ω̂)}. (38)

When ω ≥ ω̂, the wage exceeds the minimum wage and so there is no rest unemploy-
ment. Otherwise, enough workers rest to raise the log wage in utils to ω̂.

Since the wage only depends on ω, we look for an equilibrium in which any labor
market with ω > ω̄n(ω̂) immediately attracts new entrants to push the log full employ-
ment wage back to ω̄n(ω̂) and workers with the least seniority immediately exit any
labor market with ω < ωn(ω̂) until the log full employment wage increases to ωn(ω̂).
The thresholds ωn(ω̂) ≤ ω̄n(ω̂) are endogenous and depend on both labor market n
and minimum wage ω̂. Workers neither enter nor endogenously exit from labor markets
with ω ∈ (ωn(ω̂), ω̄n(ω̂)), although a fraction of the workers qn dt quit during an inter-
val of time dt. We allow for the possibility that ωn(ω̂) = −∞ so workers never exit labor
markets. When a positive shock hits a labor market with ω = ω̄n(ω̂), ω stays constant
and the labor force ℓ increases endogenously. When ωn(ω̂) < ω < ω̄n(ω̂), both positive
and negative shocks affect ω, while ℓ falls deterministically at rate qn. When ω = ωn(ω̂),
a negative shock reduces ℓ endogenously without affecting ω.

If there is an equilibrium with this property, its definition in (36) implies ω is a
regulated Brownian motion in each market nj. When ω(nj, t) ∈ (ωn(ω̂), ω̄n(ω̂)), only
productivity shocks change ω, so

dω(nj, t) =
θn − 1

θn
d ln x(nj, t) +

qn

θn
dt = µndt + σndz(nj, t), (39)

where
µn ≡ θn − 1

θn
µn,x +

qn

θn
and σn ≡ θn − 1

θn
σn,x,

i.e., ω(nj, t) has drift µn and instantaneous standard deviation σn. When the thresholds
ωn(ω̂) and ω̄n(ω̂) are finite, they act as reflecting barriers, since productivity shocks that
would move ω outside the boundaries are offset by the entry and exit of workers.
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4.3 The Value of a Worker

Consider a worker in a labor market n with log minimum wage ω̂. We can analyze the
behavior of such a worker in isolation from the rest of the economy. For notational con-
venience, we suppress the dependence of the value function on sector-specific variables
whenever there is no loss of clarity. Let {ηi}i=1,2 be the roots of

1
2

σ2η2 + µη − (ρ + λ) = 0, (40)

where the values of µ and σ for this labor market’s ω process are given by (39). Note
that (28) and our assumption that θ > 1 imply that 1

2 σ2 + µ− (ρ+ λ) < 0, in other words
η1 < 0 < 1 < η2.

The worker’s state is described by the log full employment wage in her labor market
ω and her seniority s, as well as the characteristics of her labor market, including the log
minimum wage, the stochastic process for productivity, and the substitutability of goods.
But from the worker’s perspective, it suffices to know that the log full employment wage
is a regulated Brownian motion with endogenous, labor-market specific barriers ω < ω̄.
Her seniority is her percentile in the tenure distribution in her labor market. When a
worker arrives, she starts at s = 0. Subsequently when workers enter or exit the labor
market, the seniority of all workers evolves so as to maintain a uniform distribution of
s on [0, 1]. Thus s increases only when ω = ω̄ and falls only when ω = ω; Figure 1
shows the dynamics of ω and s. Each worker exits at the first time τ(ω, 0) that her state
(ω(t), s(t)) hits (ω, 0), i.e. the first time she is the least senior worker in a market with
log full employment wage ω. She also exits exogenously at rate λ = q + δ, the sum of
the quit rate and the rate at which the labor market shuts down.

To compute the value v of a worker in state (ω, s), let

R(ω, s) =


eω if ω ≥ ω̂

eω̂ if ω < ω̂ and s ≥ 1 − eθ(ω−ω̂)

br if ω < ω̂ and s < 1 − eθ(ω−ω̂)

(41)

denote the flow payoff of a worker in each state, where we suppress the dependence of
the elasticity of substitution θ, and hence the return function R, on labor market n. The
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Figure 1: Dynamics of state vector (ω, s)
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Left figure illustrates a case where the minimum wage is set at a moderate level, whereas the right figure
illustrates the case where the minimum wage is set at a high level, so that it is binding all the time.

left-hand side of Figure 1 shows the flow payoff in (ω, s) space whenever the minimum
wage ω̂ is moderate. If ω ≥ ω̂, all workers are employed at log wage ω. Otherwise, the
most senior workers are employed at ω̂ and the less senior workers are unemployed and
get leisure br. By construction br ≤ eω̂, so employed workers are always weakly better off
than unemployed workers. Workers in a particular labor market are indifferent between
employment and unemployment only if br = eω̂ and ω ≤ ω̂.

The right-hand side of Figure 1 illustrates the state space when the minimum wage
ω̂ is high, such that it is always binding. In such case, rest unemployment always exists
in such a labor market, and it is equal to 1 − eω−ω̂.

Using the flow payoff R introduced in (41), we show in Appendix A.2.1 that the
value of a worker in state (ω0, s0) in a market characterized by log minimum wage ω̂

and thresholds ω < ω̄ is

v(ω0, s0; ω̂, ω, ω̄) = Eω0,s0

[∫ τ(ω,0)

0
e−(ρ+λ)t(R(ω(t), s(t)) + λv

)
dt + e−(ρ+λ)τ(ω,0)v

]
.

(42)
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Both the stopping time and the path of the state depend on the thresholds ω and ω̄,
while the period return function depends on ω̂. In equilibrium, workers must be willing
to exit the labor market in state (ω, 0) and to enter labor markets in state (ω̄, 0). That is,
ω and ω̄ must satisfy

v(ω, 0; ω̂, ω, ω̄) = v (43)

v(ω̄, 0; ω̂, ω, ω̄) = v̄, (44)

where v and v̄ are common to all labor markets and are determined by the leisure
from search and inactivity and by the extent of search frictions; see equations (33)–(34).
Workers must be willing to stay in labor markets in all other states:

v(ω, s; ω̂, ω, ω̄) ≥ v for all (ω, s) ∈ [ω, ω̄]× [0, 1]. (45)

Note that in the presence of a binding minimum wage, workers in some states (ω, s)
may attain a value strictly larger than v̄. Workers from outside the labor market cannot
move directly into such states because they do not have the requisite seniority.

In equilibrium, workers are just indifferent about exiting the labor market at the
stopping time τ(ω, 0). This means that the value of a worker who stays in the labor
market until she is hit by the exogenous quit shock is the same as the value of a worker
who stays until either she is hit by the quit shock or the first time she reaches state (ω, 0),

v(ω0, s0; ω̂, ω, ω̄) = Eω0,s0

[ ∫ ∞

0
e−(ρ+λ)t(R(ω(t), s(t)) + λv

)
dt

]
, (46)

when (ω, ω̄) solve equations (43) and (44) and all other workers follow the prescribed
policy, exiting the first time they hit state (ω, 0). The equivalence between the value
functions in equations (42) and (46) simplifies our exposition.

4.4 Characterization of the Value Function

Appendix A.2.2 shows that v is twice differentiable on the interior of the state space,
except at points where R(ω, s) is discontinuous, i.e. on the locus s = 1 − eθ(ω−ω̂), where
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it is once differentiable. Appendix A.2.3 proves that v satisfies the following partial
differential equations, for all (ω, s):

ρv(ω, s) = R(ω, s) + λ(v − v(ω, s)) + µvω(ω, s) + 1
2 σ2vωω(ω, s). (47)

At the highest and lowest wages and for all s,

vω(ω, s) = vs(ω, s)(1 − s)θ (48)

vω(ω̄, s) = vs(ω̄, s)(1 − s)θ. (49)

For a worker who is at the exit threshold,

vω(ω, 0) = 0. (50)

Finally, the highest level of seniority is an absorbing state until the worker exits the labor
market, which ensures that

vω(ω, 1) = vω(ω̄, 1) = 0. (51)

These act as boundary conditions and are used in our proof that the thresholds uniquely
determine the value function. We summarize these results in the following proposition.

Proposition 3. For any ω̄ > ω, v(ω, s) is uniquely determined by equations (47)–(51)
and the condition that it is almost everywhere twice differentiable. v(ω, s) is strictly
increasing in ω and strictly increasing in s if ω̂ > ω and independent of s otherwise.

Appendix A.2.4 gives closed form solutions for the value function in a typical labor
market with an arbitrary minimum wage ω̂ and thresholds ω ≤ ω̄. We display expres-
sions for three cases depending on whether the minimum wage ω̂ is (i) smaller than ω,
(ii) in the interval (ω, ω̄), or (iii) greater than or equal to ω̄. Monotonicity of the value
function is proven in Appendix A.2.5 and Appendix A.2.6. Seniority matters only if the
minimum wage sometimes binds, in the sense that unemployed workers are worse off
than employed workers within the same market.

Interestingly, in the high minimum wage case case (ω̂ ≥ ω̄), our model — from the
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point of view of a worker — is isomorphic to the frictionless model we developed in
section 2, as discussed below.

Corollary 2. When the minimum wage is sufficiently high (i.e. when ω̂ ≥ ω̄), the
worker’s value function only depends on yt ≡ eθ(ωt−ω̂)(1 − st)−1, i.e. her seniority
relative to a rescaled version of the log-full employment wage ωt. When y ≥ 1, the
worker’s seniority is high enough and the worker is employed at the minimum wage.
When y < 1, the worker rests, and exits the labor market when y < eθ(ω−ω̂). The
dynamics of yt are identical to the dynamics of (1 − st)−1 in the frictionless model of
Section 2.

This corollary can be interpreted as follows. When the minimum wage always binds,
the flow payoff to a worker in a labor market is either eω̂ (when the worker is employed),
or br (when the worker is rest unemployed) — i.e. identical to the flow payoff in the
frictionless model. Positive productivity shocks increase wage pressure, and eventually
lead to entry of new workers once ωt hits ω̄, which moves a worker’s seniority higher.
Similarly, with negative productivity shocks, the wage pressure diminishes, and after
a sufficient number of negative shocks, ωt reaches ω and workers start leaving. Thus,
while the worker’s valuation is isomorphic to its valuation in the frictionless model, the
two models are not observationally equivalent. In the frictionless model, productivity
shocks are always associated with inflows in and outflows out of such labor market,
while in the model with search friction, the labor market does not see any entry or exits
when the log full employment wage ω(t) is inside (ω, ω̄).

Proposition 3 establishes the existence of an equilibrium for any thresholds and min-
imum wage ω ≤ ω̂ ≤ ω̄ if the values of the parameters (bi, bs, α) are such that the values
of v and v̄ satisfy (43) and (44). Since the observable implication for the labor market
depends only on (ω, ω̂, ω̄), we can use this result to find the implied values for (bi, bs, α)

to rationalize such equilibrium. In the next section we turn to the inverse mapping: fix-
ing the parameters that determine v, v̄ and fixing ω̂ we show that there exist thresholds
ω, ω̄ for which there is an equilibrium.
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4.5 Existence of Equilibrium

In this section we establish the existence of an equilibrium given model parameters that
determine the search and inaction values v, v̄.

Proposition 4. Fix the value of inaction and search satisfying 0 < v < v̄. Remember
that ω̂ ≡ max

(
ln ŵ

C̄ , ln br

)
. There are two thresholds (∗ω̂, ω̂∗), with ∗ω̂ < ln bi < ω̂∗,

such that:

• If ω̂ <∗ ω̂, there exists unique equilibrium thresholds (ω∗, ω̄∗), with ω̂ < ω∗ < ω̄∗,
and which satisfy equations (43) and (44). In such labor market, there is no rest
unemployment;

• If ω̂ > ω̂∗, there exists unique equilibrium thresholds (ω(ω̂), ω̄(ω̂)), with ω(ω̂) <

ω̄(ω̂) < ω̂, and which satisfy equations (43) and (44):

ω̄(ω̂) = ω̂ − 1
η2

ln
(

eω̂ − br

eω̂∗ − br

)
(52)

ω(ω̂) = ω̂ − 1
η2

ln
(

eω̂ − br

bi − br

)
(53)

In such labor market, either workers are employed at the minimum wage ŵ, or
they are rest unemployed;

• If ω̂ ∈ (∗ω̂, ω̂∗), there exists equilibrium thresholds (ω(ω̂), ω̄(ω̂)), with ω(ω̂) <

ω̂ < ω̄(ω̂), and which satisfy equations (43) and (44). In such labor market, when
ω > ω̂, all workers are employed, while when ω < ω̂, a fraction 1 − eθ(ω−ω̂) of
workers are rest unemployed, while the remaining workers are employed and earn
the minimum wage.

Proposition 4 tells us that the mapping is invertible: given v and v̄, we can find ω

and ω̄. The case ω̂ <∗ ω̂ is the situation analyzed in Alvarez and Shimer (2011). Their
Proposition 2 shows that, everything else fixed, there exists a threshold b̄r > 0 such that
if br < b̄r, there is no rest unemployment. In that case, there exists a unique equilibrium
characterized by thresholds ω̄∗ > ω∗ > ln br where workers enter and exit labor markets
so as to regulate wages in [ω∗, ω̄∗]. These thresholds and the associated value function

30



satisfy (43)–(46). The cutoff ∗ω̂ is then simply equal to the reflecting boundary ω∗ in the
absence of minimum wage4.

When the minimum wage is sufficiently high (i.e. when ω̂ > ω̂∗), there is always rest
unemployment in such labor market, and the minimum wage always binds. In such case,
we prove in Appendix A.2.7 that the equilibrium is unique. The cutoff ω̂∗ is the solution
to a non-linear equation that depends only on the model parameters bi, br, bs, α, ρ, λ, σ, µ.
The distance between the two reflecting barriers ω̄(ω̂)− ω(ω̂) no longer depends on ω̂,
and is instead equal to 1

η2
ln
(

eω̂∗−br

bi−br

)
(i.e. it depends only on the deep model parameters).

For intermediate values of the minimum wage (i.e. when ∗ω̂ > ω̂ > ω̂∗), we conjec-
ture that the thresholds are unique but do not have a proof.

4.6 Illustration

In this section, we provide a graphical illustration of all the calculations performed until
now for intermediate values of the minimum wage — i.e. for the case where the min-
imum wage binds sometimes, but not all the time. Figure 2 shows the value function
v(ω, s) for parameters in line with those of Alvarez and Shimer (2011), when ω̂ = 0.15,
first as a function of ω for different seniorities (left-hand side), and then as a function
of seniority s for different values of ω (right-hand side).5 More senior workers are al-
ways better off than less senior workers and all workers are better off when the log
full employment wage ω is higher, although more senior workers’ value function is less
sensitive to ω. After a sequence of bad productivity shocks pushing ω towards ω, the
most junior worker entering has a value v(ω, 0) = v, making her indifferent between
staying in such labor market or exiting. Similarly, after a sequence of good productivity
shocks pushing ω towards ω̄, the most junior worker entering has a value v(ω̄, 0) = v̄.

4One might have imagined that a binding minimum wage simply raised the lower threshold for ω so
ω = ω̂. This is not the case. Since the standard deviation of productivity per unit of time explodes when
the time horizon is short, the option value of entering rest unemployment, at least briefly, always exceeds
the option value of immediately exiting the labor market when productivity falls too far.

5We consider a labor market with an elasticity of substitution θ = 2, households with discount rate
ρ = 0.05, leisure value of inactivity bi = 1, search costs κ = 2, job finding rate for searchers to α = 3.2,
so that v = 20 and v̄ = 22. We set leisure from rest unemployment to br = 0.7, the standard deviation of
wages at σ = 0.12 and the quit rate at 0.04, so that µ = q/θ − θσ2/2 ≈ 0.0056 and we can focus on the
limit as δ → 0. In the absence of a minimum wage, we find that ω = −0.258, higher than ln br = −0.357.
Therefore any minimum wage below this level has no effect.
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Figure 2: Value function v(ω, s)
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Parameters are θ = 2, ρ = 0.05, bi = 1, br = 0.7, α = 3.2, κ = 2, q = 0.04, µ = 0.0056, σ = 0.12 and
minimum wage ω̂ = 0.15. Dash vertical black lines on the left-hand side indicate the reflecting boundaries
ω and ω̄, whereas they indicate the boundaries of the state space s = 0 and s = 1 on the right-hand side.
Dash horizontal green lines on the left-hand side show the worker value at exit v and at entry v̄. Dotted
colored lines on the right-hand side indicate critical seniority values s = 1 − eθ(ω−ω̂) below which the
worker is rest-unemployed.

The right-hand side of the figure shows the value function v(ω, ·) for specific values of
ω, with the threshold s = 1 − eθ(ω−ω̂) at which the worker switches from being rest-
unemployed to being employed at the minimum wage whenever ω < ω̂ (dotted lines).

Figure 3 shows how the thresholds change as functions of the minimum wage. The
left-most dotted purple line is ∗ω̂, below which there is no equilibrium with the mini-
mum wage ever binding. The right-most dotted dark green line is ω̂∗, above which the
only equilibrium exhibits always-binding minimum wage, and where there is always
rest-unemployment. The lower bound ω increases in ω̂, with a slope less than 1. Put dif-
ferently, when the minimum wage is higher, the maximum number of workers willing to
stay in the labor market is smaller for any value of productivity. On the other hand, the
upper bound initially falls with ω̂, indicating that a modest degree of monopolization
attracts workers to the labor market for a given level of productivity. This is true even
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though the last entrant to the union is the first worker laid off.

Figure 3: Thresholds
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Parameters are θ = 2, ρ = 0.05, bi = 1, br = 0.7, α = 3.2, κ = 2, q = 0.04, µ = 0.0056, and σ = 0.12.
Dotted vertical purple line indicates the threshold ∗ω̂ below which the minimum wage never binds; dotted
vertical dark green lines shows the threshold ω̂∗ above which the minimum wage binds all the time. Dot-
dash black line indicates the 45 degree line.

4.7 Aggregation

Consider a sector n and minimum wage rate ω̂. Denote the related thresholds by ωn(ω̂)

and ω̄n(ω̂). Given these, we can compute the fraction of workers at each value of ω ∈
[ωn(ω̂), ω̄n(ω̂)]. Note that this is different from the fraction of labor markets at each
value of ω, since there are typically more workers in labor markets with a higher log full
employment wage.

Proposition 5. The steady state density of workers’ log full employment wage in sector
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n, minimum wage ω̂ is

fn(ω; ω̂) =
∑2

i=1 |ξi,n + θn|eξi,n(ω−ωn(ω̂))

∑2
i=1 |ξi,n + θn| eξi,n(ω̄n(ω̂)−ωn(ω̂))−1

ξi

, (54)

where ξ1,n < ξ2,n solve the characteristic equation δn + qn = −µnξn +
σ2

n
2 ξ2

n and ωn(ω̂) <

ω̄n(ω̂) are the thresholds for that sector and minimum wage.

The proof of this result is identical to Proposition 3 in Alvarez and Shimer (2011) and
hence omitted. That proposition also shows how to close the model via the computation
of the number of workers across labor markets and of the consumption of each good,
results that we do not repeat here. Note that under condition (28), ξ1,n ≤ −θn and
ξ2,n > 0.

Using this result, we can compute the rest and search unemployment rates for each
sector n and minimum wage ŵ. To reduce the notation, we suppress the dependence of
the thresholds on n and ŵ. If ω̂ ≤ ω, there is no rest unemployment in any such sector.
Otherwise when ω < ω̂, all workers with seniority s < 1− eθn(ω−ω̂) are rest unemployed.
This gives the rest unemployment rate in such sector. Integrating across labor markets
using (54) gives the sector- and minimum wage-specific rest unemployment rate

Ur,n(ŵ)

Ln(ŵ)
=
∫ min{ω̂,ω̄}

ω

(
1 − eθn(ω−ω̂)

)
fn(ω; ω̂) dω.

where Ur,n(ω̂) is the number of rest unemployed and Ln(ω̂) is the number of (employed
or unemployed) workers in such sector. This gives

Ur,n(ŵ)

Ln(ŵ)
=

∑2
i=1 |ξi,n + θn|

[
eξi,n(ω̄∧ω̂−ω)−1

ξi,n
− e−θ(ω̂−ω) e(ξi,n+θn)(ω̄∧ω̂−ω)−1

ξi,n+θn

]
∑2

i=1 |ξi,n + θ| eξi,n(ω̄−ω)−1
ξi,n

. (55)

Using this equation, we can easily compute how the level of the minimum wage affects
the unemployment rate within a sector and how a given minimum wage affects the
unemployment rate in different sectors.

Consider the search unemployed connected to a particular sector n and minimum
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wage ŵ. Let Ns,n(ω̂) be the number of workers that leave their labor market per unit
of time, either because conditions are sufficiently bad or because they exogenously quit
or because their labor market has exogenously shut down. As in Alvarez and Shimer
(2011), this satisfies

Ns,n(ω̂) =

(
θnσ2

n
2

fn(ω; ω̂) + δn + qn

)
Ln(ω̂). (56)

The first term gives the fraction of workers who leave their labor market to keep ω above
ω, while the second term is related to exogenous departures. In steady state, the fraction
of workers leaving their labor markets must balance the fraction of workers arriving in
such labor markets. The latter is given by the fraction of workers engaged in searching
for this sector and minimum wage, Us,n(ω̂), times the rate at which they arrive to a
labor market α, so αUs,n(ω̂) = Ns,n(ω̂). Using (56) and (54) delivers the ratio of search
unemployment to workers in a sector:

Us,n(ω̂)

Ln(ω̂)
=

1
α

θnσ2
n

2
ξ2,n − ξ1,n

∑2
i=1 |θn + ξi,n| eξi,n(ω̄−ω)−1

ξi,n

+ δn + qn

 (57)

To compute the aggregate rest and search unemployment rates, simply aggregate across
minimum wages and sectors.

Using our example from Section 4.6, Figure 4 illustrates how rest and search unem-
ployment rates in a sector vary with ω̂. Initially there is no rest unemployment, although
search unemployment is necessary to sustain the sector. As the minimum wage rises,
the rest unemployment rate starts to increase while the search unemployment rate is
approximately unchanged; union-mandated minimum wages thus provide a powerful
mechanism for generating rest unemployment.

4.8 Hazard Rate of Exiting Unemployment

When there is no rest unemployment, the hazard of exiting unemployment is simply
α. This section characterizes the hazard of exiting unemployment when there is rest
unemployment, ω̂ > ω, but not in the best markets, ω̄ > ω̂. We will show that this haz-
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Figure 4: Unemployment as a Function of Minimum Wage
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Parameters are θ = 2, ρ = 0.05, bi = 1, br = 0.7, α = 3.2, κ = 2, q = 0.04, µ = 0.0056, and σ = 0.12.
Dotted vertical purple line indicates the threshold ∗ω̂ below which the minimum wage never binds; dotted
vertical dark green lines shows the threshold ω̂∗ above which the minimum wage binds all the time.

ard is downward sloping and exhibits duration dependence; the low hazard of exiting
long-term unemployment may be important for understanding the coexistence of many
workers who move easily between jobs and a relatively small number of workers who
suffer extended unemployment spells (see Juhn, Murphy and Topel (1991)).

We determine the hazard of ending an unemployment spell of duration t, denoted
h(t), in two steps. First, we study the extent to which this hazard depends on the
seniority of the worker at the time she enters unemployment.

Lemma 1. h(t) is the same for all workers in a labor market, regardless of seniority.

The proof of Lemma 1, in Appendix A.2.8.1, shows that this hazard depends only the
distance between ω and ω̂, but not on the seniority s or full-employment wage ω at the
time such worker enters unemployment.
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A worker entering unemployment either becomes (i) search unemployed (upon a
quit shock or a labor market closure), or (ii) rest unemployed (if conditions in her la-
bor market have sufficiently deteriorated). In the first case, she regains employment
after searching, at rate α.6 In the second case, she regains employment either when (a)
local labor market conditions improve enough for her to reenter employment — occur-
ring at a duration-dependent hazard ĥr(t) — or (b) local labor market conditions have
deteriorated enough that she ends up endogenously leaving such market — occurring
at a duration-dependent hazard hr(t) — and finds a more attractive labor market after
searching. This discussion is formalized in our next proposition.

Proposition 6. Let ur(t) (resp. us(t)) be the duration-contingent rest (resp. search)
unemployment probability; h(t) is equal to

h(t) = ĥr(t)
ur(t)

ur(t) + us(t)
+ α

us(t)
ur(t) + us(t)

,

where the duration-contingent unemployment probabilities solve a system of two or-
dinary differential equations with time-varying coefficients (see equations (A40) in Ap-
pendix A.2.8.2). The sub-hazard rates hr(t), ĥr(t) admit series expansions with closed
form expressions (see equations (A42)-(A43) in Appendix A.2.8.3). Asymptotically,

lim
t→0

th(t) =
1
2

(58)

lim
t→+∞

h(t) = min
(

α, δ + q +
1
2

(
µ2

σ2 +
π2σ2

(ω̂ − ω)2

))
. (59)

The differential equations driving the duration-dependence of the unemployment
rates ur(t) and us(t) encode the fact that (i) rest-unemployed individuals transition out

6Here we use the assumption that ω̂ < ω̄ so when a search-unemployed worker finds a market, she
goes to work immediately. Implicitly, we are also assuming that as soon as a worker leaves a labor
market, she immediately goes into search, rather than becoming inactive. This assumption can be micro-
founded for instance if each member k of the representative household has a member-specific flow utility
of inactivity bik. In that case, the members with highest value bik will end up always inactive, while the
members with the lowest value bik will always be immediately deployed into search, once they exit a
given labor market. We can regard our model, as the limit case when the dispersion of bik across members
vanishes.
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of rest unemployment at rate δ + q + hr(t) + ĥr(t), and (ii) search-unemployed individ-
uals find jobs at rate α while rest-unemployed individuals transition into search unem-
ployment at rate δ + q + hr(t). The series expansions obtained for the sub-hazard rates
hr(t) and ĥr(t) rely on standard results for hitting times of a regulated Brownian motion.

Figure 5: Hazard Rates
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Left figure illustrates the hitting time hazard rates ĥr(t) (blue line) and hr(t) (red line), for a minimum
wage ω̂ = 0.15. Right figure shows the employment hazard rate h(t) for a minimum wage ω̂ = 0.15 (black
line) as well as for the minimum wage ω̂u = 0.34 (orange line) that would be set optimally by a union
(see Section 5). In both figures, parameters are θ = 2, ρ = 0.05, bi = 1, br = 0.7, α = 3.2, κ = 2, q = 0.04,
µ = 0.0056 and σ = 0.12.

Proposition 6 suggests that the short term hazard of exiting unemployment behaves
as 1/(2t). Intuitively, consider a worker on the threshold of rest unemployment, s =

1 − eθ(ω−ω̂). After a short time interval—short enough that the variance of the Brownian
motion dominates the drift—there is a 1

2 probability that ω has increased, so the worker
is reemployed, and a 1

2 chance it has fallen. But a 1
2 probability over any horizon t implies

a hazard rate 1/2t. Thus our model predicts that unionized workers experience many
short spells of unemployment, which perhaps can be interpreted as temporary layoffs.

The asymptotic hazard in (59) is decreasing in the distance ω̂ − ω. Thus, the haz-
ard rate out of unemployment might be low at long unemployment durations if search
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frictions are high enough; in other words, unionized workers will sometimes remain
unemployed for years with little chance of reemployment.

The left-hand side of Figure 5 illustrates hr(t) and ĥr(t) for parameters considered
in Section 4.6. Conditional on just having lost her job, a rest-unemployed worker has
an arbitrarily high hazard rate of regaining employment in the next instant, while it has
zero probability of leaving (endogenously) its labor market. Conditional on having been
unemployed for some time, both hitting time hazard rates stabilize at long run values.

The right-hand side of Figure 5 shows the annual hazard rate of finding a job in our
baseline calibration (in solid black, with its asymptote in dotted black), as well as in
case of a higher minimum wage ω̂u = 0.34, which would be set optimally by a union
(see Section 5). h(t) behaves similarly to ĥr(t) at short duration. With a low minimum
wage, few workers get trapped in long-term unemployment because the gap between the
minimum wage ω̂ and the exit threshold ω is small. That is, most workers either quickly
find a job or exit the labor market. With a higher (monopoly) union wage ω̂u > ω̂, more
workers get stuck in long-term unemployment. This tends to increase unemployment
duration, and overall unemployment. In a labor market with such a high minimum
wage, the efficiency of search affects the hazard of exiting long-term unemployment
only indirectly, through its influence on the distance between the rest unemployment
boundaries ω̂ − ω.

Since the rest unemployed find jobs so quickly at the start of an unemployment
spell, the share of searchers among the unemployed grows rapidly (left-hand side of
Figure 6). After this point, however, the hazard of exiting rest unemployment falls below
the hazard of exiting search unemployment and so the share of searchers stabilizes. The
characterization of h(t) allows us to compute the full distribution of unemployment
duration τ, using Pr (τ ≤ t) = 1 − exp

(∫ t
0 h(s)ds

)
. We illustrate such distribution on

the right-hand side of Figure 6.
Our finding of a constant hazard rate for workers in search unemployment and a

decreasing hazard rate for workers in rest unemployment is consistent with empirical
evidence. Katz and Meyer (1990) show that the empirical decline in the job finding
hazard rate is concentrated among workers on temporary layoff. Moreover, they find
that workers who expect to be recalled to a past employer and are not—in our model,
workers who end a spell of rest unemployment by searching for a new labor market, at

39



Figure 6: Searchers Amongst Unemployed and Unemployment Duration
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Left figure illustrates the fraction of searchers amongst unemployed workers. Right figure shows the full
distribution of unemployment duration, as well as its mean and median. In both figures, parameters are
θ = 2, ρ = 0.05, bi = 1, br = 0.7, α = 3.2, κ = 2, q = 0.04, µ = 0.0056, σ = 0.12 and minimum wage
ω̂ = 0.15.

hazard hr(t) + δ + q—experience longer unemployment duration than observationally
equivalent workers who immediately entered search unemployment — in our model,
workers experiencing a δ or q shock. Starr-McCluer (1993) finds that the hazard of
exiting unemployment is decreasing for workers who move to a job that is similar to
their previous one (rest unemployed) while it is actually increasing for workers who
move to a different type of job (search unemployed).

4.9 Random Allocation vs. Seniority Rule

In Section 2.6 we compared the equilibrium unemployment rate with seniority rule with
that which would be prevalent in a world where jobs are allocated randomly to workers,
and we showed that seniority rule lowers unemployment. We revisit this analysis in the
presence of the search frictions of our full model.

Consider a labor market with a minimum wage, search frictions, but where jobs are
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allocated randomly — rather than subject to a seniority rule. We look for an equilibrium
of this environment in which the full employment wage ω is regulated between two
barriers ωr, ω̄r. Similar to our model with seniority rule, when ω(t) falls sufficiently
following a sequence of bad productivity shocks, workers exit such market; instead,
when ω(t) increases sufficiently after a sequence of good shocks, the labor market is so
attractive that new workers enter. In such an equilibrium, the unemployment rate u(ω)

in a market with full employment wage ω is either zero in case ω ≥ ω̂, or 1 − eθ(ω−ω̂)

whenever the minimum wage is binding. When the minimum wage is binding and
some workers are rest-unemployed, a worker is employed at the minimum wage with
probability 1 − u (ω(t)) and is rest-unemployed otherwise. With random allocation of
workers into jobs, the flow payoff for a given worker is

R(ω) =

eω if ω ≥ ω̂

(1 − u(ω)) eω̂ + u(ω)br if ω < ω̂
(60)

The value of a worker in a market with full employment wage ω = ω0 characterized by
log minimum wage ω̂ and thresholds ωr < ω̄r is

v(ω0; ω̂, ωr, ω̄r) = Eω0

[∫ τ(ωr)

0
e−(ρ+λ)t(R(ω(t)) + λv

)
dt + e−(ρ+λ)τ(ωr)v

]
Thus, all workers in a given labor market have the same continuation value v, and their
relative seniority becomes irrelevant.

Using a method similar to what was employed previously, Appendix A.2.9 provides
analytic expressions for the value function in the case where the minimum wage is either
(i) low enough that it never binds — in which case the equilibrium we are studying is
identical to that studied in Alvarez and Shimer (2011), (ii) intermediate so that it binds
sometimes, and (iii) high enough so that it binds at all times. The crucial distinction
between our setup with random allocation rule and that with seniority rule is that re-
flecting boundaries ωr (at which point workers exit the market) and ω̄r (at which point
workers enter the market) will differ from those prevalent in the seniority rule environ-
ment. Similar to Proposition 4 (omitted in the paper), one could show the existence of
limiting minimum wage thresholds ∗ω̂r and ω̂∗

r , with ∗ω̂r = ∗ω̂, which distinguish the
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three possible types of equilibria of this model:

• For low values of the minimum wage, ω̂ <∗ ω̂, the equilibrium with random
allocation of jobs is identical to that with a seniority rule, the minimum wage
never binds and there is no rest unemployment;

• For high values of the minimum wage, ω̂ > ω̂∗
r there exists equilibrium thresholds

(ωr(ω̂), ω̄r(ω̂)), with ωr(ω̂) < ω̄r(ω̂) < ω̂, and in such labor market, the minimum
wage binds at all times and there is always some rest unemployment, i.e. u(ω) > 0
always;

• For intermediate values of the minimum wage, ∗ω̂r < ω̂ < ω̂∗
r , there exists equi-

librium thresholds (ωr(ω̂), ω̄r(ω̂)), with ωr(ω̂) < ω̂ < ω̄r(ω̂), and in such labor
market, the minimum wage binds whenever ω > ω̂.

Figure 7: Optimal Boundaries and Unemployment Rates
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Parameters are θ = 2, ρ = 0.05, bi = 1, br = 0.7, α = 3.2, κ = 2, q = 0.04, µ = 0.0056, and σ = 0.12 when
we vary the minimum wage ω̂. Dotted vertical purple line indicates the threshold ∗ω̂ below which the
minimum wage never binds; dotted vertical dark (resp. light) green lines shows the threshold ω̂∗ (resp.
ω̂∗

r ) above which the minimum wage binds all the time in the seniority rule model (resp. the random
allocation rule model).
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The left-hand side of Figure 7 illustrates the behavior of the regulated boundaries
ωr, ω̄r in the model with random allocation vs. those in the seniory rule model, as a
function of the minimum wage ω̂. For low minimum wages ω̂ <∗ ω̂r =∗ ω̂, these
boundaries are identical. As the minimum wage increases, both ωr and ω̄r are lower
than their counterpart in the seniority rule equilibrium. This suggests that — controlling
for productivity — workers are attracted more easily into a labor market that has a
random allocation rule, but that workers stick around longer in labor markets with
bad productivities before exiting (relative to the case with seniority rule). Moreover,
the threshold minimum wage ω̂∗

r above which the minimum wage starts binding at
all times is below its counterpart ω̂∗ in an environment with seniority rule. Lastly,
the right-hand side of Figure 7 suggests that these lower reflecting boundaries lead to
higher rest unemployment in the random allocation model, relative to the environment
with a seniority rule; while search unemployment seems slightly lower with a random
allocation rule, total unemployment is worse at all levels of the minimum wage ω̂. These
calculations thus confirm the intuition built in our framework of Section 2 without search
frictions: seniority rule results in labor markets with lower levels of unemployment.

5 Union Objective Function

In this final section, we consider a monopoly union representing the ℓ(nj, t) workers in
labor market nj at time t. The union’s objective is to maximize the total flow utility of
those workers,

e(nj, t)w(nj, t)
1
C̄
+
(
ℓ(nj, t)− e(nj, t)

)
br,

where e(nj, t) is the measure of workers who are employed, w(nj, t) is the wage, and
1/C̄ is the marginal utility of consumption. For example, we can think of the union
setting the wage and then letting competitive firms determine how many workers to
hire. Our setup thus departs from Grossman (1983), who instead maximizes the utility
of the median union member, mimicking the internal political process of many unions.
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From the analysis in Section 3.3, we know that employment is

e(nj, t) = min

{
ℓ(nj, t),

C̄(t)θn
(

Ax(nj, t)
)θn−1

C(n, t)θn−1wθn

}
.

The solution to the union’s problem is to set w(nj, t) = C̄eω̂ where

ω̂ = ln br + ln(θn/(θn − 1)) (61)

if this leaves some workers unemployed and otherwise to set a higher level of wages
consistent with full employment, w(nj, t) = C̄eω, where ω is the log full employment
wage defined in (36). In other words, the union sets a constant minimum wage which
leaves a gap between the utility of the members who work and those who are rest
unemployed. The minimum wage is time-invariant, although it will vary across labor
markets depending on the elasticity of substitution θn. This is exactly the type of policy
that we have analyzed in this paper; the analysis here simply provides a link between
the minimum wage and the preference parameters br and θn.

According to this model, the economy would be perfectly competitive in the absence
of unions. By monopolizing a labor market, a union can extract the monopoly rent. It
does this by raising wages in order to restrict employment and output and hence raise
the price of the good produced in the labor market. It achieves exactly the same outcome
as would be attained by a monopoly producer facing a competitive labor market.7 The
model predicts that unions will be more successful at raising wages in labor markets
producing goods that have poor substitution possibilities, θn close to 1.

Some observers have noted that, while unionization raises unemployment rates, the
effects are mitigated if unions coordinate their activities (Stephen Nickell and Richard
Layard, 1999). Our model suggests that this may because coordinated unions are able to
internalize the impact of exploiting their monopoly power on other workers. The Pareto
optimal allocation is achieved by dropping the minimum wage constraints, so a worker

7We do not analyze the interaction between a monopoly producer a monopoly union. In this case, set-
ting a wage and allowing the firm to determine employment is generally inefficient. The two monopolists
should agree on both a wage and a level of employment. Still, it seems likely that the equilibrium outcome
will be a wage floor.
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can work whenever ω = ln br (see Alvarez and Shimer, 2011, Appendix B.2). Perhaps
coordinated unions are able to avoid the incentive to restrict output in individual labor
markets.

6 Conclusion

Our work analyzes the impact of unions on unemployment and wage dynamics in a
model whose building blocks rely on the canonical work of Lucas and Prescott (1974).
By imposing a minimum wage and seniority rule, unions cause rest unemployment,
with recently laid-off workers intentionally staying within an under-performing labor
market with the hope of regaining employment as the conditions improve. Hazard
rates out of unemployment are thus steeply downward sloping, with many short jobless
spells as well as few long ones, with an average unemployment duration that increases
with the level of minimum wage. Unionized labor markets in our model feature wage
compression — and in the extreme case where the minimum wage binds all the time,
a constant wage rate irrespective of the evolution of sectorial productivity. Seniority
rules, by backloading workers’ payoff into the future, reduce the overall level of unem-
ployment, relative to an alternative rule where jobs are allocated randomly to workers,
thereby improving efficiency. While not the focus of our work, one could envision other
job-worker allocation mechanisms, effectively assigning property rights to workers so
as to alter their incentives to enter and exit labor markets, ultimately reducing further
unemployment. Our theory and model predictions should be viewed as a starting point
for the study of the influence of unions on labor market dynamics, as the increasing
empirical evidence (see for instance Bhuller et al. (2022)) suggests that today’s collective
bargaining systems feature significant degrees of heterogeneity across OECD countries.
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Appendix

A.1 Proofs: Frictionless Model

A.1.1 Dynamics of Seniority

The dynamics of the measure of workers ℓ(t) in a given labor market can be derived
from d log ℓ(t) = (θ − 1)d log x(t) using Itô’s lemma:

dℓ(t) = µℓ(t)dt + σℓ(t)dz(t),

where we have noted µℓ(t) = (θ − 1)
(

µx +
1
2(θ − 1)σ2

x

)
ℓ(t) and σℓ(t) = (θ − 1)σxℓ(t).

Assume that s(t) satisfies the stochastic differential equation:

ds(t) = µs(t)dt + σs(t)dz(t)

The postulated equilibrium condition (15) can then re-written:

d (s(t)ℓ(t)) = (ℓ(t)µs(t) + s(t)µℓ(t) + σs(t)σℓ(t)) dt + (ℓ(t)σs(t) + s(t)σℓ(t)) dz(t)
= dℓ(t) + qℓ(t) (1 − s(t)) dt

Identifying the drift and volatility of the seniority s(t) is then straightforward, after
applying Itô’s lemma:

µs(t) = (1 − s)
[

1 + (θ − 1)
(

µx −
1
2
(θ − 1)σ2

x

)]
σs(t) = (1 − s)(θ − 1)σx

□

A.1.2 Stationary Distribution of Productivity

Let g̃(y) be the stationary distribution of log productivity y = log x. Let us assume that
the cumulative distribution function F̃ of new goods’ log productivities admits a density
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f̃ , such that F̃′(y) = f̃ (y). g̃(·) solves the Kolmogorov forward equation:

δg̃(y) = −µx g̃′(y) +
1
2

σ2
x g̃′′(y) + δ f̃ (y) (A1)

The general solution of this second order ordinary differential equation takes the form:

C1eη̃1y + C2eη̃2y,

where η̃1 < 0 < η̃2 and η̃1, η̃2 are the two real solutions of the quadratic equation:

1
2

σ2
x η̃2 − µxη̃ − δ = 0

One can easily verify that a particular solution to Equation (A1) can be computed as
follows:

α1(y)eη̃1y + α2(y)eη̃2y

in which we have noted:

α1(y) =
2δ

(η̃2 − η̃1)σ2
x

∫ y

K
e−η̃1u f̃ (u)du

α2(y) =
−2δ

(η̃2 − η̃1)σ2
x

∫ y

K
e−η̃2u f̃ (u)du

The complete solution of Equation (A1) thus takes the form

g̃(y) = (C1 + α1(y)) eη̃1y + (C2 + α2(y)) eη̃2y,

where C1, C2, K verify
∫ +∞
−∞ g̃(u)du = 1, limu→−∞ g̃(u) = 0 and limu→+∞ g̃(u) = 0. □

A.1.3 Solving the Model

Using the laws of motion for s(t) in our conjectured equilibrium, the worker’s value
function v satisfies the following Hamilton-Jacobi-Bellman equation:
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ρv(s) = R(s) + λ

(
w∗

ρC
− v(s)

)
+ (1 − s)

[
q + (θ − 1)

(
µx −

1
2
(θ − 1)σ2

x

)]
v′(s)

+
1
2
(1 − s)2(θ − 1)2σ2

x v′′(s) (A2)

for all s ∈ (0, 1). Equation (A2) assumes that v(s) is twice continuously differentiable at s
where R(s) is continuous, although it is only once differentiable at s = ŝ. We then focus
on boundary conditions. The value matching condition states that workers with zero
seniority are indifferent about participating in the market and going to a competitive
market,

v(0) =
w∗

ρC
.

The smooth pasting condition states that the marginal value of seniority is zero at low
seniority,

v′(0) = 0.

We establish the latter condition in Appendix A.1.4. Finally, note that seniority s = 1,
aside from the risk of the household member suffering an exogenous quit or the related
labor market shutting down, is an absorbing state. This means that

ρv(1) =
ŵ
C
+ λ

(
w∗

ρC
− v(1)

)
,

which ensures that the marginal value of seniority is bounded at s = 1.
Equation (A2) is a second order ordinary differential equation, with a period return

function that is either br or ŵ/C. Moreover, we also look for the endogenous threshold
ŝ, above which the worker is employed and below which the worker is rest unemployed.
We thus need 5 equations to solve this second order ordinary differential equations on
two sub-intervals s ∈ [0, ŝ) ∪ (ŝ, 1]. Two equations will come from value matching and
smooth pasting conditions at s = 0, one equation will come from the fact that the value
function must be finite at s = 1, and the last two equations will come from the continuous
differentiability of v as s = ŝ. This yields:

v(s) =


br

ρ + λ
+

λw∗/C
(ρ + λ)ρ

+
2

∑
i=1

ci(1 − s)−ηi if s < ŝ

ŵ/C
ρ + λ

+
λw∗/C
(ρ + λ)ρ

+
2

∑
i=1

ĉi(1 − s)−ηi if s ≥ ŝ,
(A3)

where the exponents {ηi}i=1,2 are the two roots of Equation (17). Note that η1 < 0 and
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η2 > 1, the latter condition being ensured by Equation (6). The threshold for working ŝ,
and hence the unemployment rate in the market, is given by Equation (18). Combining
equations (12) and (18) yields Equation (19) for w̄. Since ŵ > w∗, θ > 1, and η2 > 1, this
implies w̄ < ŵ. The constants ci and ĉi satisfy

c1 =

(
w∗/C − br

ρ + λ

)
η2

η2 − η1
> 0, c2 = −

(
w∗/C − br

ρ + λ

)
η1

η2 − η1
> 0,

ĉ1 = −
(

w∗/C − br

ρ + λ

)
η2

η2 − η1

( ŵ − brC
w∗ − brC

) η2−η1
η2 − 1

 < 0, ĉ2 = 0.

The general form of the value function in (A3) is the unique solution to the differential
(A2) at all points s ∈ [0, ŝ) ∪ (ŝ, 1]. The constants c1 and c2 are pinned down by the
value-matching and smooth-pasting conditions. The restriction ĉ2 = 0 is required to be
sure that the value function stays bounded as seniority converges to 1. Finally, the choice
of ĉ1 and ŝ is determined by the requirement that the value function is everywhere once
differentiable, lims→ŝ+ v(s) = lims→ŝ− v(s) and lims→ŝ+ v′(s) = lims→ŝ− v′(s).

It is straightforward to verify algebraically that the value function is increasing in s.
First, note that on the interval [0, ŝ], v is strictly convex in s. Since v′(0) = 0, v′(s) is
increasing for s < ŝ8. At values of s > ŝ, v′(s) is positive because ĉ1 < 0 and η1 < 0. This
confirms that workers exit their labor market voluntarily only when their seniority falls
to 0. □

A.1.4 Smooth Pasting Condition

Note µs(s) = (1 − s)
[
q + (θ − 1)

(
µx − 1

2(θ − 1)σ2
x

)]
and σs(s) = (1 − s)(θ − 1)σx. We

consider a discrete time, discrete state space Markov chain approximation of the stochas-
tic process {s(t)}t≥0. Our approximate Markov Chain is parametrized by the small
step h > 0. Take some arbitrary ϵ > 0. Note Qh(s) ≡ σ2

s (s) + h|µs(s)| + ϵh, and let
∆th ≡ h2/Qh(s) be a small time step. Note that infs∈[0,1] Qh(s) > 0, meaning that ∆th

is well defined for all s ∈ [0, 1]. The discount factor is 1 − ρ∆th, and the exogenous exit
probability is λ∆th. s lies on the grid {0, h, . . . , (Nh − 1)h, Nhh}, with Nh ≡ 1/h. Each
time period, s increases by h with probability ph

u(s), decreases by h with probability

8It is actually strictly increasing on (0, ŝ]
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ph
d(s), and stays constant with probability ph

f (s) where those probabilities satisfy:

ph
u(s) : =

1
2 σ2

s (s) + h max (0, µs(s))
Qh(s)

ph
d(s) : =

1
2 σ2

s (s) + h max (0,−µs(s))
Qh(s)

ph
c (s) : =

ϵh
Qh(s)

Note that those probabilities are greater than zero and add up to 1. The Markov chain
approximation constructed is consistent: E [∆s|s] = µs(s)∆th and var [∆s|s] = σ2

s (s)∆th +
o
(
∆th). Moreover, limh→0 ∆th = 0. At seniority level 0, between t and t+∆th, a worker’s

value can be written as follows:

v(0) = br∆th + (1 − ρ∆th)

[
bi

ρ
λ∆th + (1 − λ∆th)

(
ph

u(0)v(0 + h) + ph
f (0)v(0) + ph

d(0)
bi

ρ

)]
Taking a first order Taylor expansion of v around s = 0 and using v(0) = bi/ρ, the terms
of order zero cancel out, while the terms of order h only cancel out if v′(0) = 0, which is
the smooth pasting condition we were looking for. □

A.1.5 Closing the Model

To determine aggregate consumption C, we can use the fact that in equilibrium, the
consumption of good j is c(j, t) = Ax(j, t)ℓ(j, t). Using equations (11) and (19), we
obtain an expression for c(j, t) as a function of the minimum wage and of w∗ = biC (the
wage in unconstrained labor markets):

c(j, t) = C
Aθ−1

max (w∗, ŵ(j))θ

(
max (w∗, ŵ(j))− brC

w∗ − brC

)1/η2

x(j, t)θ

Using Equation (3) gives an implicit equation that C needs to satisfy in equilibrium:

1 =
∫ 1

0

A
(θ−1)2

θ

max (w∗, ŵ(j))θ−1

(
max (w∗, ŵ(j))− brC

w∗ − brC

) θ−1
η2θ

x(j, t)θ−1dj
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In Appendix A.1.2, we calculated an analyical expression for the stationary distribution
g̃(·) of log productivity log x as a function of δ, µx, σx and the new firms’ productivity
distribution F(·). Note that g̃ does not depend on the parameters ρ, q and θ. Noting
µ(j) the mass of labor markets with minimum wage ŵ(j), aggregate consumption C is
solution to the following:

1

A
(θ−1)2

θ

(∫ +∞
∞ e(θ−1)u g̃(u)du

) =

 ∑
j:ŵ(j)>biC

µ(j)
ŵ(j)θ−1

(
ŵ(j)/C − br

bi − br

) θ−1
η2θ

+

1 − ∑
j:ŵ(j)>biC

µ(j)

 1
(biC)θ−1


A.2 Proofs: Full Model

A.2.1 Value Function Derivation

A worker in state (ω0, s0) in a market characterized by a log minimum wage ω̂ and
boundaries (ω, ω̄), has a value function that can be expressed as follows:

v(ω0, s0; ω̂, ω, ω̄) = Eω0,s0

[ ∫ τ

0
e−ρtR(ω(t), s(t))dt + e−ρτv (ω(τ), s(τ); ω̂, ω, ω̄)

]

In the above, τ ≡ τ(ω, 0) ∧ τλ. The stopping time τ(ω, 0) = inf{t : (ω(t), s(t)) = (ω, 0)}
is the first time the worker reaches state (ω, 0). The stopping time τλ is an exponentially
distributed random variable, with arrival intensity λ. We can then use the law of iterated
expectations and condition on the realization of the Brownian path (and therefore the
realization of the stopping time τ(ω, 0)):

v(ω0, s0; ω̂, ω, ω̄) = Eω0,s0

[
Eω0,s0

[ ∫ τ

0
e−ρtR(ω(t), s(t))dt+ e−ρτv (ω(τ), s(τ); ω̂, ω, ω̄)

∣∣∣τ(ω, 0)

]]

We note that the conditional expectation can be expressed as follows:

Eω0,s0

[ ∫ τ

0
e−ρtR(ω(t), s(t))dt + e−ρτv (ω(τ), s(τ); ω̂, ω, ω̄)

∣∣∣∣∣τ(ω, 0)

]
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= e−λτ(ω,0) ×
(∫ τ(ω,0)

0
e−ρtR(ω(t), s(t))dt + e−ρτ(ω,0)v

)
+
∫ τ(ω,0)

0
λe−λz

(∫ z

0
e−ρtR(ω(t), s(t))dt + e−ρzv

)
dz

Integration by part of the second integral above leads us to:

Eω0,s0

[ ∫ τ

0
e−ρtR(ω(t), s(t))dt + e−ρτv (ω(τ), s(τ); ω̂, ω, ω̄)

∣∣∣∣∣τ(ω, 0)

]

=
∫ τ(ω,0)

0
e−(ρ+λ)t (R(ω(t), s(t)) + λv) dt + e−(ρ+λ)τ(ω,0)v

We thus obtain the desired result:

v(ω0, s0; ω̂, ω, ω̄) = Eω0,s0

[ ∫ τ(ω,0)

0
e−(ρ+λ)t(R(ω(t), s(t)) + λv

)
dt + e−(ρ+λ)τ(ω,0)v

]

□

A.2.2 Differentiability of the Value Function

Note that for ω ∈ (ω, ω̄), a worker’s seniority is constant; although some workers exit
the market exogenously, they are drawn uniformly from the population of workers. Now
let τ(ω) = inf{t : ω(t) = ω} and τ(ω̄) = inf{t : ω(t) = ω̄} denote the stopping times
when ω first hits ω and ω̄, infinite if it hits the other boundary first. Then we can rewrite
(42) as

v(ω0, s0; ω̂, ω, ω̄) = Eω0

[ ∫ τ(ω)∧τ(ω̄)

0
e−(ρ+λ)t(R(ω(t), s0) + λv

)
dt

+ 1{τ(ω)<τ(ω̄)}v(ω, s0)e−(ρ+λ)τ(ω) + 1{τ(ω)>τ(ω̄)}v(ω̄, s0)e−(ρ+λ)τ(ω̄)

]
.

This can be re-written:
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v(ω0, s0; ω̂, ω, ω̄) =
∫ ω̄

ω
(R(ω, s0) + λv)π (ω, ω0; ω, ω̄) dω

+ ψ (ω0; ω, ω̄) v (ω, s0) + Ψ (ω0; ω, ω̄) v (ω̄, s0)

In the above, π (ω, ω0; ω, ω̄) is the discounted local time up to the stopping time τ ≡
τ(ω) ∧ τ(ω̄), and the functions ψ, Ψ are defined as:

ψ (ω0; ω, ω̄) = E
[
e−(ρ+λ)τ|τ = τ(ω), ω(0) = ω0

]
Pr (τ = τ(ω)|ω(0) = ω0) (A4)

Ψ (ω0; ω, ω̄) = E
[
e−(ρ+λ)τ|τ = τ(ω̄), ω(0) = ω0

]
Pr (τ = τ(ω̄)|ω(0) = ω0) (A5)

And τ ≡ τ(ω) ∧ τ(ω̄). In proposition 5.3, Stokey (2008) shows that:

ψ (ω0; ω, ω̄) =
eη1(ω0−ω̄) − eη2(ω0−ω̄)

eη1(ω−ω̄) − eη2(ω−ω̄)

Ψ (ω0; ω, ω̄) =
eη1(ω0−ω) − eη2(ω0−ω)

eη1(ω̄−ω) − eη2(ω̄−ω)

In exercise 5.4, Stokey (2008) shows that:

π (ω, ω0; ω, ω̄) =


1

(µ2+2(ρ+λ)σ2)
1/2

[
eη1(ω0−ω) − Ψ(ω0)eη1(ω̄−ω) − ψ(ω0)eη2(ω−ω)

]
if ω ≤ ω ≤ ω0

1
(µ2+2(ρ+λ)σ2)

1/2

[
eη2(ω0−ω) − Ψ(ω0)eη1(ω̄−ω) − ψ(ω0)eη2(ω−ω)

]
if ω0 ≤ ω ≤ ω̄,

Since π is everywhere continuous and is continuously differentiable except at ω0, differ-
entiating the previous expression gives

∂v(ω0, s0; ω̂, ω, ω̄)

∂ω0
=
∫ ω̄

ω

(
R(ω(t), s0) + λv

)∂π(ω, ω0; ω, ω̄)

∂ω0
dt

+
(

lim
ω↑ω0

R(ω, s0)− lim
ω↓ω0

R(ω, s0)
)
π(ω0, ω0; ω, ω̄)

+ v(ω, s0)
∂ψ(ω0; ω, ω̄)

∂ω0
+ v(ω̄, s0)

∂Ψ(ω0; ω, ω̄)

∂ω0

This in turn is continuously differentiable if R(ω, s0) is continuous at ω = ω0, i.e. if
s0 ̸= 1 − eθ(ω−ω̂). □
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A.2.3 Discrete Time, Discrete State Space Full Model

We consider a discrete time, discrete state space Markov chain approximation of the
stochastic process {ω(t)}t≥0. Our approximate Markov chain is parametrized by h > 0.
Let ∆th = h2/σ2 be a small time period, and let ∆ph = µ

σ2 h. The discount factor is
1− ρ∆th, and the exogenous exit probability is λ∆th. ω lies on the grid {ω, ω+ h, . . . , ω+
(n − 1)h, ω + nh ≡ ω̄}. Between t and t + ∆th, when ω < ω < ω̄, ω increases by h with
probability ph

u = 1
2(1 + ∆ph) and decreases by h with probability ph

d = 1
2(1 − ∆ph), while

the seniority s stays constant. The Markov chain approximation constructed is consistent:
E [∆ω] = µ∆th and var [∆ω] = σ2∆th + o

(
∆th). Moreover, limh→0 ∆th = 0.

If ω = ω, it increases to ω + h with probability ph
u. Otherwise, if there is a negative

shock, ω is unchanged and all workers with seniority s < 1 − e−θh exit the labor market.
This ensures that log employment falls by θh, which according to (36) is enough to leave
the log full employment wage constant. The seniority of all other workers changes as
well, falling from s to

s − ∆sh =
s − 1 + e−θh

e−θh . (A6)

and ∆sh = (1 − s)(eθh − 1) = (1 − s)θh + o(h) when h → 0.
Conversely, if ω = ω̄, a negative shock reduces it to ω̄ − h with probability ph

d.
Otherwise there is a positive shock. ω is unchanged, but log employment rises by θh in
order to leave the log full employment wage constant. The seniority of all workers rises
from s to

s + ∆sh =
s − 1 + eθh

eθh . (A7)

and ∆sh = (1 − s)(1 − e−θh) = (1 − s)θh + o(h) when h → 0.
First take ω on the interior of the grid and an arbitrary s. The Bellman equation

implies

v(ω, s) = R(ω, s)∆th + (1 − ρ∆th)
(

λ∆thv

+ (1 − λ∆th)
(1

2(1 + ∆ph)v(ω + h, s) + 1
2(1 − ∆ph)v(ω − h, s)

))
.

Take a second order Taylor expansion to v(ω ± h, s) around v(ω, s) and simplify:

v(ω, s) = R(ω, s)
h2

σ2 + (1 − ρ
h2

σ2 )
(

λ
h2

σ2 v

+ (1 − λ
h2

σ2 )
(
v(ω, s) + vω(ω, s)

µh2

σ2 +
1
2

vωω(ω, s)h2))+ o(h2)
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The zero order terms cancel out, while there are no first order term. Dividing by h2 > 0
and taking the limit as h → 0 gives (47).

Now consider ω = ω. For s > 1 − e−θh, the Bellman equation solves

v(ω, s) = R(ω, s)∆th + (1 − ρ∆th)
(

λ∆thv

+ (1 − λ∆th)
(1

2(1 + ∆ph)v(ω + h, s) + 1
2(1 − ∆ph)v(ω, s − ∆sh)

))
.

Now take a first order Taylor expansion of v around (ω, s); higher order terms would
disappear from the expression. We obtain

v(ω, s) = R(ω, s)
h2

σ2 + (1 − ρ
h2

σ2 )
(

λ
h2

σ2 v

+ (1 − λ
h2

σ2 )
(
v(ω, s) +

1
2
(1 +

µh
σ2 )vω(ω, s)h − 1

2
(1 − µh

σ2 )vs(ω, s)(1 − s)θh
))

+ o(h)

The zero order terms cancel out. Dividing by h > 0 and taking the limit as h → 0 gives
(48). The derivation of (49) is almost identical and hence omitted.

Now take ω = ω and s ≤ 1 − e−θh. In this case, the Bellman equation solves

v(ω, s) = R(ω, s)∆th +(1− ρ∆th)
(

λ∆thv+(1−λ∆th)
(1

2(1+∆ph)v(ω+ h, s)+ 1
2(1−∆ph)v

))
.

Taking a first order Taylor expansion of v around (ω, 0) and using v(ω, 0) = v gives

v + vs(ω, 0)s = R(ω, s)
h2

σ2 + (1 − ρ
h2

σ2 )
(

λ
h2

σ2 v

+ (1 − λ
h2

σ2 )
(

v + 1
2(1 +

µh
σ2 )

(
vω(ω, 0)h + vs(ω, 0)s

)))
+ o(h)

The zero order terms cancel out. Dividing by h > 0, taking the limit as h → 0 and
combining with (48) gives (50).

Finally we handle the case of s = 1. Since the seniority of such a worker never
changes (see equations (A6) and A7), we have

v(ω, 1) = R(ω, 1)∆th + (1 − ρ∆th)
(

λ∆thv

+ (1 − λ∆th)
(1

2(1 + ∆ph)v(ω + h, 1) + 1
2(1 − ∆ph)v(ω, 1)

))
.
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Take a first order Taylor expansion of v around (ω, 1):

v(ω, 1) = R(ω, 1)
h2

σ2 +(1− ρ
h2

σ2 )
(

λ
h2

σ2 v+(1−λ
h2

σ2 )
(
v(ω, 1)+ 1

2(1+
µh
σ2 )vω(ω, 1)h

))
+ o(h)

The zero order terms cancel out. Dividing by h > 0, taking the limit as h → 0 gives
vω(ω, 1) = 0. A similar logic at (ω̄, 1) gives vω(ω̄, 1) = 0, establishing (51). □

A.2.4 Expression for the Value Function given Thresholds

A.2.4.1 High Minimum Wage

We first tackle the case where ω̂ ≥ ω̄. We claim that the value function satisfies

v(ω, s) =


eω̂ + λv

ρ + λ
+ ĉ1(s)eη1(ω−ω̂) + ĉ2(s)eη2(ω−ω̂) if s ≥ 1 − eθ(ω−ω̂)

br + λv
ρ + λ

+ c1(s)eη1(ω−ω̂) + c2(s)eη2(ω−ω̂) if s < 1 − eθ(ω−ω̂),
(A8)

where η1 < 0 < 1 < η2 are the roots of the characteristic (40), and the univariate
functions of integration satisfy

ĉ1(s) = −
(

η2

η2 − η1

)(
eω̂ − br

ρ + λ

)
(1 − e−(η2−η1)(ω̂−ω))(1 − s)−η1/θ (A9)

ĉ2(s) = 0 (A10)

c1(s) = ĉ1(s) +
(

η2

η2 − η1

)(
eω̂ − br

ρ + λ

)
(1 − s)−η1/θ (A11)

c2(s) = ĉ2(s) +
(

−η1

η2 − η1

)(
eω̂ − br

ρ + λ

)
(1 − s)−η2/θ, (A12)

where we leave the expressions in a convenient form.
To prove this, note first that (A8) is the general solution to (47). All that remains is

to characterize the four functions of integration. The condition that the value function is
continuously differentiable even at the boundary between work and rest unemployment,
i.e. points of the form (ω, 1 − eθ(ω−ω̂)), yields equations (A11) and (A12). Equation (48)
and (49) then reduce to ĉi(s)ηi = ĉ′i(s)(1 − θ)s for i = 1, 2, or equivalently ĉi(s) =

ci(1 − s)−ηi/θ.
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To pin down the two constants c1 and c2, we use two more boundary conditions.
The value function needs to have finite value at s = 1, which implies c2 = 0 and (A10).
Finally, use (50) to pin down the last constant c1, yielding (A9). Note that equations (51)
are automatically satisfied.

Finally, note that we can perform a change in variable y ≡ eθ(ω−ω̂)

1−s , and express the
value function as a function of y:

v(y) =


eω̂ + λv

ρ + λ
+ ĉ1(0)yη1/θ if y ≥ 1

br + λv
ρ + λ

+ c1(0)yη1/θ + c2(0)yη2/θ if y < 1
(A13)

In this particular environment, the worker only cares about his seniority relative to
some rescaled version of the log full-employment wage ω. If such renormalized state
variable y is greater than 1, the worker is employed at the minimum wage ŵ, while if y
is less than 1, the worker is rest-unemployed and receives br in utils. Note that yt evolves
as follows:

dyt

yt
=

[
θµ +

1
2

θ2σ2
]

dt + θσdzt

Those dynamics need to be compared to the dynamics of the state variable (1 − st)−1 in
our frictionless model of section 2:

d (1 − st)
−1

(1 − st)
−1 =

[
q + (θ − 1)µx +

1
2
(θ − 1)2σ2

x

]
dt + (θ − 1)σxdzt

Since µ and σ depend on µx, σx according to (39), it is immediate to notice that the drift
and diffusion coefficients of (1 − st)−1 in our frictionless model are identical to those of
yt.

We end this section by noting that in the above and going forward, in the case of
a high minimum wage, we assume ω̂ = max (log(ŵ/C), log br) = log(ŵ/C) > log br,
since otherwise, workers receive br utils irrespective of their seniority or the level of ω,
meaning that the value function would be constant and equal to br+λv

ρ+λ . □
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A.2.4.2 Moderate Minimum Wage

Next we turn to the case where ω̄ > ω̂ ≥ ω. The basic approach is similar. We claim
that the value function satisfies

v(ω, s) =



eω

ρ + λ − µ − 1
2 σ2

+
λv

ρ + λ
+ c̄1(s)eη1(ω−ω̂) + c̄2(s)eη2(ω−ω̂) if ω ≥ ω̂

eω̂ + λv
ρ + λ

+ ĉ1(s)eη1(ω−ω̂) + ĉ2(s)eη2(ω−ω̂) if ω < ω̂ and s ≥ 1 − eθ(ω−ω̂)

br + λv
ρ + λ

+ c1(s)eη1(ω−ω̂) + c2(s)eη2(ω−ω̂) if ω < ω̂ and s < 1 − eθ(ω−ω̂),

(A14)
where η1 < 0 < 1 < η2 solve (40). The functions ci, ĉi, c̄i are as follows:

ĉ1(s) = c1(1 − s)−η1/θ + ζ1 (A15)
ĉ2(s) = ζ2 (A16)

c̄1(s) = ĉ1(s) + a1eη1ω̂ (A17)

c̄2(s) = ĉ2(s) + a2eη2ω̂ (A18)

c1(s) = ĉ1(s) +
(

η2

η2 − η1

)(
eω̂ − br

ρ + λ

)
(1 − s)−η1/θ (A19)

c2(s) = ĉ2(s) +
(

−η1

η2 − η1

)(
eω̂ − br

ρ + λ

)
(1 − s)−η2/θ (A20)

The constants c1 and ζ1, ζ2 are equal to:

c1 = −
(

η2

η2 − η1

)(
eω̂ − br

ρ + λ

)(
1 − e−(η2−η1)(ω̂−ω)

)
≤ 0 (A21)

ζ1 =

eη1ω̂+η2ω

(
eω̄

ρ+λ−µ− 1
2 σ2 + η1eη1ω̄a1 + η2eη2ω̄a2

)
η1 (eη1ω+η2ω̄ − eη1ω̄+η2ω)

(A22)

ζ2 = −
eη1ω+η2ω̂

(
eω̄

ρ+λ−µ− 1
2 σ2 + η1eη1ω̄a1 + η2eη2ω̄a2

)
η2 (eη1ω+η2ω̄ − eη1ω̄+η2ω)

(A23)

60



Note that ζ2 = − η1
η2

e(η2−η1)(ω̂−ω)ζ1. The constants a1, a2 are equal to:

a1 =
1
2 σ2η2(η2 − 1)e(1−η1)ω̂

(η2 − η1)(ρ + λ)(ρ + λ − µ − 1
2 σ2)

=
(η2 − 1)e(1−η1)ω̂

(η2 − η1)(−η1)(ρ + λ − µ − 1
2 σ2)

(A24)

a2 = −
1
2 σ2η1(η1 − 1)e(1−η2)ω̂

(η2 − η1)(ρ + λ)(ρ + λ − µ − 1
2 σ2)

=
(η1 − 1)e(1−η2)ω̂

(η2 − η1)η2(ρ + λ − µ − 1
2 σ2)

(A25)

Once again, (A14) is the general solution to (47). Continuous differentiability of the
value function at ω = ω̂ yields equations (A17) and (A18). Continuous differentiability
of the value function at the locus s = 1− eθ(ω−ω̂) yields equations (A19) and (A20). Then
equations (48) and (49) yield:

η1c1(s)e
η1(ω−ω̂) + η2c2(s)e

η2(ω−ω̂) = (1 − s)θ
[
c′1(s)e

η1(ω−ω̂) + c′2(s)e
η2(ω−ω̂)

]
η1ĉ1(s)eη1(ω−ω̂) + η2ĉ2(s)eη2(ω−ω̂) = (1 − s)θ

[
ĉ′1(s)e

η1(ω−ω̂) + ĉ′2(s)e
η2(ω−ω̂)

]
Using the expression previously established for ci leads to a pair of differential equations:

(
ĉ′1(s)
ĉ′2(s)

)
=

1
θ(1 − s)

(
η1 0
0 η2

)(
ĉ1(s)
ĉ2(s)

)
+

eω̄

ρ+λ−µ− 1
2 σ2 + η1eη1ω̄a1 + η2eη2ω̄a2

θ(1 − s) (eη1ω+η2ω̄ − eη1ω̄+η2ω)

(
−eη1ω̂+η2ω

eη1ω+η2ω̂

)
The solution to this pair of ordinary differential equations is:

ĉ1(s) = c1(1 − s)−η1/θ + ζ1

ĉ2(s) = c2(1 − s)−η2/θ + ζ2,

with c1 and c2 two constants of integration. The value function needs to have a finite
value for s = 1, meaning that we need to have c2 = 0. Finally, we use (50) to pin down
c1. This leads to equations (A15) and (A16). Note that equations (51) are automatically
satisfied. □

A.2.4.3 Low Minimum Wage

Finally we study ω̂ < ω. This is equivalent to the case when ω̂ = ω, since in both situa-
tions the minimum wage never binds. Applying the analysis with a moderate minimum
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wage gives

v(ω, s) =
eω

ρ + λ − µ − 1
2 σ2

+
λv

ρ + λ
+ c1eη1(ω−ω) + c2eη2(ω−ω) (A26)

where η1 < 0 < 1 < η2 solve (40) and

c1 =
−1/η1

ρ + λ − µ − 1
2 σ2

(
eη2ω̄+(η1+1)ω − e(η2+η1)ω+ω̄

eη1ω+η2ω̄ − eη1ω̄+η2ω

)
> 0 (A27)

c2 =
1/η2

ρ + λ − µ − 1
2 σ2

(
eη1ω̄+(η2+1)ω − e(η1+η2)ω+ω̄

eη1ω+η2ω̄ − eη1ω̄+η2ω

)
< 0 (A28)

Note that the value function does not depend on the worker’s seniority. □

A.2.5 Monotonicity of the Value Function in s

A.2.5.1 High Minimum Wage

This is the case where ω̂ ≥ ω̄. In the region 1 > s ≥ 1 − eθ(ω−ω̂), the partial derivative
of the value function w.r.t. s takes the following form:

vs(ω, s) =
1

θ(1 − s)

(
−η1η2

η2 − η1

)(
eω̂ − br

ρ + λ

)(
1 − e−(η2−η1)(ω̂−ω)

)
(1 − s)−η1/θeη1(ω−ω̂) > 0

The inequality stems from the fact that η1 < 0 < η2 and from our assumption that
eω̂ > br. When 0 ≤ s < 1 − eθ(ω−ω̂), some algebra leads to:

vs(ω, s) =
1

θ(1 − s)

(
−η1η2

η2 − η1

)(
eω̂ − br

ρ + λ

) [
(1 − s)−η2/θeη2(ω−ω̂) − (1 − s)−η1/θe−(η2−η1)(ω̂−ω)eη1(ω−ω̂)

]
First, note that vs(ω, 0) > 0 for ω > ω, since η2(ω − ω̂) > −(η2 − η1)(ω̂ − ω) + η1(ω −
ω̂) on this interval and since η1 < 0 < η2. Similarly, evaluated at the boundary s =

1 − eθ(ω−ω̂), vs is also positive. The locus of points where vs(ω, s) = 0 is the locus of
points s = 1 − eθ(ω−ω). In the (ω, s) space, this locus of points is downward sloping,
and is always below the locus of points s = 1 − eθ(ω−ω̂), meaning that we have just
established that v is also strictly increasing in s whenever 0 ≤ s < 1 − eθ(ω−ω̂). □
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A.2.5.2 Moderate Minimum Wage

This is the case where ω̄ > ω̂ ≥ ω. Whether (ω, s) is in the domain {(ω, s) : ω̄ ≥
ω ≥ ω̂, s ∈ [0, 1)} or in the domain {(ω, s) : ω ≤ ω ≤ ω̂, 1 > s ≥ 1 − eθ(ω−ω̂)},
Appendix A.2.4 enables us to compute the partial derivative of v with respect to s:

vs(ω, s) =
1

θ(1 − s)

(
−η1η2

η2 − η1

)(
eω̂ − br

ρ + λ

)
(1 − s)−η1/θ

(
1 − e−(η2−η1)(ω̂−ω)

)
eη1(ω−ω̂)

Thus on those domains, vs > 0. On the interval ω ≤ ω ≤ ω̂ and s ≤ 1 − eθ(ω−ω̂), we
compute:

vs(ω, s) =
1

θ(1 − s)

(
−η1η2

η2 − η1

)(
eω̂ − br

ρ + λ

)
(1− s)−η1/θeη1(ω−ω̂)

[
(1 − s)−

1
θ (η2−η1)e−(η2−η1)(ω̂−ω)

−e−(η2−η1)(ω̂−ω)
]

vs(ω, 0) > 0 when ω < ω ≤ ω̂, since −(η2 − η1)(ω̂ − ω) > −(η2 − η1)(ω̂ − ω) on this
interval. Similarly, evaluated at the boundary s = 1 − eθ(ω−ω̂), vs is also positive. The
locus of points where vs(ω, s) = 0 is the locus of points s = 1 − eθ(ω−ω). In the (ω, s)
space, this locus of points is downward sloping, and is always below the locus of points
s = 1 − eθ(ω−ω̂), meaning that we have just established that v is also strictly increasing
in s whenever ω ≤ ω ≤ ω̂ and 0 < s ≤ 1 − eθ(ω−ω̂). □

A.2.5.3 Low Minimum Wage

The closed form expression for v established in Appendix A.2.4 is independent of s,
which proves the claim. □

A.2.6 Monotonicity of the Value Function in ω

A.2.6.1 High or Moderate Minimum Wage

A high or moderate minimum wage corresponds to ω̂ ≥ ω. In this case, we established
in A.2.5 that the function v is strictly increasing in s, for all values ω ∈ [ω, ω̄]. Let us
take an arbitrary seniority level s ∈ [0, 1). Since vs(ω, s) > 0 and vs(ω̄, s) > 0, we can
use (48) and (49) to conclude that vω(ω, s) > 0 and vω(ω̄, s) > 0. We will prove by
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contradiction that the value function must be strictly increasing in ω, for all ω ∈ [ω, ω̄].
Let us assume for now that v is not strictly increasing in ω on that interval. Since v
is twice differentiable in ω on [ω, ω̄], and since vω(ω, s) and vω(ω̄, s) are both strictly
positive, two situations can arise if v is not strictly increasing in ω:

1. There exists an open interval on which the function v(·, s) is strictly decreasing, in
other words there exists (ω1, ω2), with ω < ω1 < ω2 < ω̄, such that v(ω1, s) >
v(ω2, s), with vω(ω1, s) = vω(ω2, s) = 0, and vωω(ω1, s) < 0 < vωω(ω2, s).

2. There exists an open interval on which the function v(·, s) is constant, in other
words there exists (ω1, ω2), with ω < ω1 < ω2 < ω̄, such that for all ω ∈ (ω1, ω2),
all the partial derivatives of v with respect to ω evaluated at those points are equal
to zero.

We will study these cases one at a time.

1. In this case, since vω(ω1, s) = vω(ω2, s) = 0, we can use (47) to establish the
following inequality:

vωω(ω1, s) =
2
σ2 ((λ + ρ)v(ω1, s)− (R(ω1, s) + λv)) < 0

vωω(ω2, s) =
2
σ2 ((λ + ρ)v(ω2, s)− (R(ω2, s) + λv)) > 0

Both inequalities lead to:

v(ω1, s) <
1

λ + ρ
(R(ω1, s) + λv)

v(ω2, s) >
1

λ + ρ
(R(ω2, s) + λv)

But this is a contradiction, since we know that R(ω2, s) ≥ R(ω1, s) and since we
have assumed v(ω1, s) > v(ω2, s).

2. In thise case, we know that for any ω̃ ∈ (ω1, ω2), we have vω(ω̃, s) = vωω(ω̃, s) =
vωωω(ω̃, s) = ... = 0. Indeed, we know that the function v is constant in ω on
that interval and that the function v is C∞ in ω given the closed form expression
established for v. This provides for an infinite number of algebraic and linearly
independent equations satisfied by ω̃, which leads to an immediate contradiction.

Thus we found a contradiction in both situations, and have proved our claim. Note that
an alternative proof can be constructed as follows. Note ξ(·) the Dirac-Delta function.
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For any function f (·), any ϵ > 0 and any a, we have
∫ a+ϵ

a−ϵ f (x)ξ(x − a)dx = f (x). Then
differentiate (47) w.r.t. ω to obtain the following:

(ρ + λ)vω(ω, s) = eω1{ω≥ω̂} + ξ
(

s − 1 + eθ(ω−ω̂)
)
+ ξ (ω − ω̂) + µvωω(ω, s) + 1

2 σ2vωωω(ω, s)

It is easy to make this argument more rigorous by approximating the Dirac-Delta func-
tion by a sequence of smooth functions and let such sequence converge to the Dirac-Delta
function. Using Feynman-Kac, vω thus admits the integral representation:

vω(ω, s) = Eω

[∫ τ

0
e−(ρ+λ)t

(
eω(t))1{ω(t)≥ω̂} + ξ

(
s − 1 + eθ(ω(t)−ω̂)

)
+ ξ (ω(t)− ω̂)

)
dt

+e−(ρ+λ)τvω(ω(τ), s)
]

In the above, τ = τ(ω, s) ∧ τ(ω̄, s). We established in A.2.5 that the function v is strictly
increasing in s, for all values ω ∈ [ω, ω̄]. Thus we can use (48) and (49) to conclude
that vω(ω, s) > 0 and vω(ω̄, s) > 0. In other words vω(ω, s) can be represented as the
expectation of the sum of (a) an integral of positive terms and (b) some discounted term
that is positive. This means that vω is strictly positive. □

A.2.6.2 Low Minimum Wage

This case was treated in Alvarez and Shimer (2011) and is thus omitted. □

A.2.7 Existence of Equilibrium

A.2.7.1 High Minimum Wage

In Appendix A.2.4, we establish a closed form expression for the value function under
the assumption that ω̂ ≥ ω̄. We now need to show that there exists a threshold value
ω̂∗ such that if ω̂ > ω̂∗, the boundary conditions (43) and (44) lead to unique values
ω(ω̂), ω̄(ω̂) that are consistent with ω(ω̂) < ω̄(ω̂) < ω̂. Using Appendix A.2.4, (43) can
be expressed as follows:

v(ω, 0; ω, ω̄, ω̂) =
br + λv
ρ + λ

+

(
eω̂ − br

ρ + λ

)
e−η2(ω̂−ω) = v (A29)
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Similarly, (44) can be expressed as follows:

v(ω̄, 0; ω, ω̄, ω̂) =
br + λv
ρ + λ

+

(
eω̂ − br

ρ + λ

) [
η2

η2 − η1
e−(η2−η1)(ω̂−ω)eη1(ω̄−ω̂) +

−η1

η2 − η1
eη2(ω̄−ω̂)

]
= v̄ (A30)

We first show that irrespective of the value of ω̂, the system of 2 equations (A29) and
(A30) in two unknown ω, ω̄ always has a unique solution. Let ω̄∗ be the point that solves
v (ω̄∗, 0; ω̄∗, ω̄∗, ω̂) = v̄. In other words, ω̄∗ solves9:

br + λv
ρ + λ

+
eω̂ − br

ρ + λ
e−η2(ω̂−ω̄∗) = v̄ (A31)

Now take ω < ω̄∗. The function ω̄ → v(ω̄, 0; ω, ω̄, ω̂) is strictly increasing in ω̄, and con-
verges to +∞ when ω̄ → +∞. Additionally, since ω → v(ω̄, 0; ω, ω̄, ω̂) is strictly increas-
ing in ω, it must be the case that v(ω̄∗, 0; ω, ω̄∗, ω̂) < v̄, since ω < ω̄∗. Thus, the interme-
diate value theorem delivers us Ω̄(ω) > ω̄∗, which verifies v(Ω̄(ω), 0; ω, Ω̄(ω), ω̂) = v̄.
An example of function Ω̄(·) is plotted in Figure A-1. Continuity of v gives us conti-
nuity of Ω̄(·), and monotonicity of v tells us that Ω̄(·) is strictly decreasing. Moreover,
limω→−∞ Ω̄(ω) exists and is equal to ω̄∗∗ (with ω̄∗∗ > ω̄∗), which solves10:

br + λv
ρ + λ

+

(
eω̂ − br

ρ + λ

)(
−η1

η2 − η1

)
e−η2(ω̂−ω̄∗∗) = v̄ (A32)

Notice that Ω̄(ω) ∈ (ω̄∗, ω̄∗∗) for any ω < ω̄∗. Let ω∗ the point that solves v(ω∗, 0; ω∗, ω∗, ω̂) =
v. In other words, ω∗ solves:

br + λv
ρ + λ

+
eω̂ − br

ρ + λ
e−η2(ω̂−ω∗) = v (A33)

Note that we must have ω∗ < ω̄∗, since v < v̄. Note also that for any ω̄ > ω∗,
v(ω∗, 0; ω̄, ω∗, ω̂) = v. In other words, the implicit function Ω(·) which verifies v(Ω(ω̄), 0; ω̄, Ω(ω̄), ω̂) =
v for all ω̄ > ω∗ is a constant function, equal to ω∗. Note finally that we have the fol-

9One can verify that ω̄∗ = ω̂ + 1
η2

ln
[(

bi−br
eω̂−br

)
+ ρ+λ

α

(
bi−bs
eω̂−br

)]
10One can verify that ω̄∗∗ = ω̄∗ + 1

η2
ln
(

η2−η1
−η1

)
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lowing analytical expression:

ω∗ = ω̂ +
1
η2

log
(

bi − br

eω̂ − br

)
(A34)

In other words, it must be the case that bi > br and bi < eω̂ for an equilibrium of this
type to exist. An example of function Ω(·) is plotted in Figure A-1.

ωω*ω*

ω**

ω

ω*

Ω ( ω* )
Ω ( ω )

Ω ( ω )

45 degree lin
e

Figure A-1: Equilibrium with high minimum wage.

An equilibrium is a fixed point of the composition Ω̄ ◦ Ω. Since Ω(·) is a constant
function, the composition Ω̄ ◦ Ω is also constant, and there is a unique fixed point ω̄ of
the function Ω̄ ◦ Ω, attained for ω̄ = Ω̄(ω∗) ∈ (ω̄∗, ω̄∗∗).

We have thus proven that irrespective of ω̂, the system of 2 equations (43) and (44)
in two unknown ω, ω̄ always has a unique solution. It remains to check that the cutoff
ω̄ = Ω̄(ω∗) is indeed such that ω̄ < ω̂, or at least establish a sufficient condition such
that it is the case. Note that ω̄ verifies the equation:

v(ω̄, 0; ω∗, ω̄, ω̂) =
br + λv
ρ + λ

+

(
eω̂ − br

ρ + λ

) [
η2

η2 − η1
e−(η2−η1)(ω̂−ω∗)eη1(ω̄−ω̂) +

−η1

η2 − η1
eη2(ω̄−ω̂)

]
= v̄

Where ω∗ has been analytically determined in (A34). Reinjecting into the equation

67



v(ω̄, 0; ω∗, ω̄, ω̂) = v̄ and simplifying, we obtain:

η2

η2 − η1

(
eω̂ − br

bi − br

) η1
η2

eη1(ω̄−ω̂) +
−η1

η2 − η1

(
eω̂ − br

bi − br

)
eη2(ω̄−ω̂) = 1 +

ρ + λ

α

bi − bs

bi − br
(A35)

If there is no solution ω̄ < ω̂ of the equation above, this leads to a contradiction, estab-
lishing that if an equilibrium exists, it must be such that ω̄ > ω̂. Note that (A35) can be
rewritten ϕ(ω̄, ω̂) = 1 + ρ+λ

α
bi−bs
bi−br

, where we have defined

ϕ(ω̄, ω̂) ≡ η2

η2 − η1

(
eω̂ − br

bi − br

) η1
η2

eη1(ω̄−ω̂) +
−η1

η2 − η1

(
eω̂ − br

bi − br

)
eη2(ω̄−ω̂)

The function ϕ is convex in ω̄, and:

ϕω̄(ω̄, ω̂) =

(
eω̂ − br

bi − br

)(
−η1η2

η2 − η1

)eη2(ω̄−ω̂) −
(

eω̂ − br

bi − br

)− η2−η1
η2

eη1(ω̄−ω̂)


Thus ϕ(·, ω̂) reaches its minimum (in ω̄) for ω∗(ω̂) (see (A34)), and the minimum
reached is equal to:

ϕ(ω∗(ω̂), ω̂) = 1 < 1 +
ρ + λ

α

bi − bs

bi − br

Thus, (A35), for the unknown ω̄, always has two solutions. But since the minimum of
this function is reached at ω∗(ω̂), only the larger root of this equation can be a candidate
ω̄. Let ω̄(ω̂) be the largest of these two roots (and the only legitimate candidate equilib-
rium). Note that the implicit function theorem and some algebra leads us to calculate:

ω̄′(ω̂) = 1 − 1
η2

eω̂

eω̂ − br
(A36)

The functions ω̄(·) is thus convex. Let ω̂0 solve ω̄′(ω̂0) = 0, in other words eω̂0 = η2
η2−1 br.

We thus know that ω̄(·) is decreasing for ω̂ < ω̂0 and is increasing for ω̂ > ω̂0. Notice
also that limω̂↘log br ω̄(ω̂) = +∞ and that limω̂→+∞ ω̄′(ω̂) = 1 − 1/η2 < 1. Let ω̂∗ be
the unique fixed point of ω̄ (·), in other words ω̂∗ = ω̄ (ω̂∗). In Figure A-2, we provide
an illustration of what ω̄ (·) and ω (·) look like. We have thus proven that the threshold
value ω̂∗ is such that:
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1. If ω̂ > ω̂∗, the highest solution to (A35) satisfies ω̂ > ω̄(ω̂), meaning there is a
unique equilibrium of the form above in such labor market;

2. If ω̂ < ω̂∗, the highest solution to (A35) satisfies ω̄(ω̂) > ω̂, meaning there is no
equilibrium of the form specified above in such labor market.

ω̂ω̂
*ln(br)

ω , ω

ω ( ω̂ )
ω ( ω̂ )
45o  line

Figure A-2: Endogeneous equilibrium boundaries with high minimum wages.

Note that ω̂∗ satisfies ϕ (ω̂∗, ω̂∗) = 1 + ρ+λ
α

bi−bs
bi−br

, in other words ω̂∗ satisfies:

η2

η2 − η1

(
eω̂∗ − br

bi − br

) η1
η2

+
−η1

η2 − η1

(
eω̂∗ − br

bi − br

)
−
(

1 +
ρ + λ

α

bi − bs

bi − br

)
= 0 (A37)

The function of ω̂∗ defined via (A37) is convex, and reaches its minimum − ρ+λ
α

bi−bs
bi−br

< 0
at ω̂∗ = ln bi. Thus this equation has two roots. Now, remember that for an equilibrium
of this type to exist, it must be the case that eω̂ > bi. In other words, the root that we
are looking for is the highest of the two roots of the equation above. Using this notation,
we can also use the differential equation (A36) satisfied by ω̄(·) to obtain the following
closed-form expressions:

ω̄(ω̂) = ω̂ − 1
η2

ln
(

eω̂ − br

eω̂∗ − br

)
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ω(ω̂) = ω̂ − 1
η2

ln
(

eω̂ − br

bi − br

)
□

A.2.7.2 Moderate Minimum Wage

We establish the existence of an equilibrium with moderate minimum wage whenever
ω ∈ (∗ω̂, ω̂∗) via several lemmas.

Lemma 2. The value function v(ω, s; ω, ω̄, ω̂) is increasing in ω̄.

The proof of this lemma is straightforward. Inspection of (A14) shows that the value
function admits a partial derivative with respect to ω̄ that is equal to:

vω̄(ω, s; ω, ω̄, ω̂) =
∂ζ1

∂ω̄

(
1 − η1

η2
e(η2−η1)(ω−ω)

)
eη1(ω−ω̂),

for any ω ∈ [ω, ω̄] and any s ∈ [0, 1]. Some algebra enables us to express ζ1 as follows:

ζ1 =
eη1ω̂

(−η1)(η2 − η1)
(

ρ + λ − µ − 1
2 σ2
)A(ω, ω̄, ω̂) (A38)

Where we have defined:

A(ω, ω̄, ω̂) ≡
eη2ω

[(
(η2 − 1)eη1(ω̄−ω̂) + (1 − η1)eη2(ω̄−ω̂)

)
eω̂ − (η2 − η1)eω̄

]
eη1ω+η2ω̄ − eη1ω̄+η2ω (A39)

Notice that A is always positive: its denominator is positive, and the terms in bracket
can be re-written, for x = ω̄ − ω̂ ≥ 0:(

(η2 − 1)eη1(ω̄−ω̂) + (1 − η1)eη2(ω̄−ω̂)
)

eω̂ − (η2 − η1)eω̄ =

eω̂+x
[
(η2 − 1)e(η1−1)x + (1 − η1)e(η2−1)x − (η2 − η1)

]
The term in brackets is positive since it is an increasing function of x, with value 0 at
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x = 0. It can be showed that:

Aω̄(ω, ω̄, ω̂) =
eη2ω+ω̄ (η2 − η1)

[
(η2 − 1)(1 − e(η1−1)(ω̄−ω̂))eη1ω+η2ω̄ + (1 − η1)(1 − e(η2−1)(ω̄−ω̂))eη1ω̄+η2ω

]
(eη1ω+η2ω̄ − eη1ω̄+η2ω)2

And since the function g(x) = (η2 − 1)(1− e(η1−1)x)eη1ω+η2ω̄ +(1− η1)(1− e(η2−1)x)eη1ω̄+η2ω

is such that g(0) = 0 and for x ∈ [0, ω̄ − ω]:

g′(x) = (η2 − 1)(1 − η1)
(

eη1ω+η2ω̄+(η1−1)x − eη1ω̄+η2ω+(η2−1)x
)
≥ 0

It must be the case that g(x) ≥ 0 for all x ∈ [0, ω̄ − ω], meaning that we must have
Aω̄(ω, ω̄, ω̂) ≥ 0. This means that vω̄ ≥ 0. □

Lemma 3. The value function v(ω, s; ω, ω̄, ω̂) is increasing in ω.

Our proof is similar to the proof of the previous lemma. Inspection of (A14) shows
that the value function admits a partial derivative with respect to ω that is equal to:

vω(ω, s; ω, ω̄, ω̂) =
d

dω

[(
1 − η1

η2
e(η2−η1)(ω−ω)

)
ζ1 + c1(1 − s)−η1/θ

]
eη1(ω−ω̂),

for any ω ∈ [ω, ω̄] and any s ∈ [0, 1]. In other words, we have:

vω(ω, s) =
[

∂ζ1

∂ω

(
1 − η1

η2
e(η2−η1)(ω−ω)

)
+

η1

η2
(η2 − η1)e(η2−η1)(ω−ω)ζ1

+ η2
eω̂ − br

ρ + λ
e−(η2−η1)(ω̂−ω)(1 − s)−η1/θ

]
eη1(ω−ω̂)

The last term of the expression in brackets is clearly positive. Remember that we ex-
pressed ζ1 as a constant (independent of ω) multiplied by the function A, defined in
(A39). Note also that:

Aω(ω, ω̄, ω̂) =
(η2 − η1)eη1ω+η2ω̄ A(ω, ω̄, ω̂)

eη1ω+η2ω̄ − eη1ω̄+η2ω

This enables us to simplify the first two terms in the expression of vω (up to a constant
factor):
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(
1 − η1

η2
e(η2−η1)(ω−ω)

)
Aω(ω, ω̄, ω̂) +

η1

η2
(η2 − η1)e(η2−η1)(ω−ω)A(ω, ω̄, ω̂) =

(η2 − η1)eη1ω+η2ω̄

eη1ω+η2ω̄ − eη1ω̄+η2ω

(
1 − η1

η2
e−(η2−η1)(ω̄−ω)

)
A(ω̂, ω, ω̄)

This latter expression is clearly positive, establishing the claim. □

Lemma 4. Assume that ω̂ > ln
(

η2−1
η2

bi

)
. Let a(ω̂) be defined as follows:

a(ω̂) =

{
ω̂ if ω̂ ≥ ln bi

a(ω̂) > ω̂ : v (ω̂, 0; ω̂, a(ω̂), ω̂) = v if ln
(

η2−1
η2

bi

)
< ω̂ < ln bi

Then for any ω̄ > a(ω̂), we have v (ω̂, 0; ω̂, ω̄, ω̂) > v. There exists a unique ω =
Γ (ω̄) ≤ ω̂ that satisfies v (ω, 0; ω, ω̄, ω̂) = v. The function Γ has domain [a(ω̂);+∞). Γ
is decreasing in ω̄, with limits:

lim
ω̄→a(ω̂)

Γ (ω̄) = min
(

ω̂, ω̂ +
1
η2

ln
(

bi − br

eω̂ − br

))
lim

ω̄→+∞
Γ (ω̄) = ω̂ +

1
η2

ln

(
bi − br

η2
η2−1 eω̂ − br

)

Use the formula for v in (A14) and ω = ω̂ to notice that:

v (ω̂, 0; ω̂, ω̄, ω̂) =
1

ρ + λ

[
eω̂ + λv +

eη1ω̂ A (ω̂, ω̄, ω̂)

(1 − η1)(η2 − 1)

]
In the above, A (ω, ω̄, ω̂) is defined via (A39), and it is always positive when ω̄ ≥ ω̂.
Thus, if eω̂ ≥ bi, then v (ω̂, 0; ω̂, ω̄, ω̂) ≥ v. If eω̂ < bi, we have v (ω̂, 0; ω̂, ω̂, ω̂) < v.
However, notice that ω̄ → A (ω̂, ω̄, ω̂) is increasing, and that:

lim
ω̄→+∞

v (ω̂, 0; ω̂, ω̄, ω̂) =
1

ρ + λ

[
η2

η2 − 1
eω̂ + λv̄

]

Thus, so long as eω̂ > η2−1
η2

bi, it is possible to pick ω̄ high enough such that v (ω̂, 0; ω̂, ω̄, ω̂) ≥
v. Let a(ω̂) > ω̂ be such that v (ω̂, 0; ω̂, a(ω̂), ω̂) = v: a(ω̂) will be the lowest bound of
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the domain of the function Γ to be described shortly, and is defined implicitly via:

(1 − η1) (η2 − 1)
(

eη2(a(ω̂)−ω̂) − eη1(a(ω̂)−ω̂)
)

bi =[
η2(1 − η1)eη2(a(ω̂)−ω̂) + η1(η2 − 1)eη1(a(ω̂)−ω̂) − (η2 − η1)ea(ω̂)−ω̂

]
eω̂

a(·) is decreasing for ω̂ ∈
(

ln
(

η2−1
η2

bi

)
; ln bi

)
, with the following limits:

lim
ω̂→ln

(
η2−1

η2
bi

) a(ω̂) = +∞

lim
ω̂→ln bi

a(ω̂) = ln bi

Notice also that a(·) is none other than the implicit function that solves:

v (ω; ω, a(ω)) = v,

where v is the value function computed in the case of a low minimum wage (i.e. never
binding) displayed in (A26).

Then, notice that limω→−∞ v (ω, 0; ω, ω̄, ω̂) = br+λv
ρ+λ < v since v = bi/ρ and since

br < bi by assumption. Since v is increasing in ω and in ω, it means that the function
ω → v (ω, 0; ω, ω̄, ω̂) is strictly increasing, in addition to being continuous. Thus, the
intermediate value theorem provides for the existence and uniqueness of ω = Γ (ω̄) ≤
ω̂ such that v (ω, 0; ω, ω̄, ω̂) = v. Since v is increasing in ω̄, the function Γ must be
decreasing in ω̄. Notice then that the equation v (ω, 0) = v can be expressed as follows:

v =
br + λv
ρ + λ

+

(
eω̂ − br

ρ + λ

)
e−η2(ω̂−ω) + ζ1

(
1 − η1

η2

)
e−η1(ω̂−ω)

=
br + λv
ρ + λ

+

(
eω̂ − br

ρ + λ

)
e−η2(ω̂−ω) +

eη1ω A (ω, ω̄, ω̂)

(ρ + λ) (1 − η1) (η2 − 1)

If ω̂ ≥ ln bi, when ω̄ → ω̂, since A (ω, ω̄, ω̂) → 0, we have:

lim
ω̄→ω̂

Γ (ω̄) = ω̂ +
1
η2

ln
(

bi − br

eω̂ − br

)
Otherwise, if ω̂ < ln bi, by construction v (ω̂, 0; ω̂, a(ω̂), ω̂) = v, meaning that Γ(ω̄) → ω̂
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as ω̄ → a(ω̂). Let us look at the behavior of A (ω, ω̄, ω̂) as ω̄ → +∞:

A (ω, ω̄, ω̂) =
ω̄→+∞

(1 − η1)e(η2−η1)ω+(1−η2)ω̂ + o(1)

Finally, we can also easily eastablish that:

lim
ω̄→+∞

Γ (ω̄) = ω̂ +
1
η2

ln

(
bi − br

η2
η2−1 eω̂ − br

)

Note that this last expression is less than ω̂ only if ω̂ > ln
(

η2−1
η2

bi

)
. We have thus estab-

lished at the same time that there cannot be an equilibrium with “moderate minimum
wage binding” when ω̂ < ln

(
η2−1

η2
bi

)
. □

Lemma 5. The function ω̂ → v (ω̂, 0; Γ(ω̂), ω̂, ω̂) is convex and strictly increasing for
ω̂ > ln bi. It admits a minimum equal to v at ω̂ = ln bi. ω̂∗ > ln bi is the unique point
that satisfies v (ω̂∗, 0; Γ(ω̂∗), ω̂∗, ω̂∗) = v̄.

We can use the analytical expression of v to express v (ω̄, 0; ω, ω̄, ω̂) as follows:

v (ω̄, 0; ω, ω̄, ω̂) =
eω̄

ρ + λ − µ − 1
2 σ2

+
λv

ρ + λ
+ ζ1eη1(ω̄−ω̂)

(
1 − η1

η2
e(η2−η1)(ω̄−ω)

)
+ c1eη1(ω̄−ω̂) + a1eη1ω̄ + a2eη2ω̄

Remember that ζ1 is equal to A(ω, ω̄, ω̂) multiplied by a constant that is independent
of (ω, ω̄). Remember also that A(ω, ω̂, ω̂) = 0. This means that v (ω̂, 0; ω, ω̂, ω̂) has the
following form:

v (ω̂, 0; ω, ω̂, ω̂) =
eω̂ + λv

ρ + λ
− η2

η2 − η1

(
eω̂ − br

ρ + λ

)(
1 − e−(η2−η1)(ω̂−ω)

)
Finally, remember that when ω̄ → ω̂, we have Γ(ω̄) → ω̂ + 1

η2
ln
(

bi−br
eω̂−br

)
. We can reinject

such expression into ω to obtain:

v (ω̂, 0; Γ(ω̂), ω̂, ω̂) =

(
bi − br

ρ + λ

)[
br + λv
bi − br

+
η2

η2 − η1

(
eω̂ − br

bi − br

)η1/η2

− η1

η2 − η1

(
eω̂ − br

bi − br

)]
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Note that the function above is convex, and reaches a minimum when ω̂ = ln bi. Such
minimum is equal to v which is of course strictly less than v̄. Thus, the equation
v (ω̂, 0; Γ(ω̂), ω̂, ω̂) = v̄ admits a unique root ω̂∗ > ln bi. □

Lemma 6. If ln bi < ω̂ < ω̂∗, there exists at least one equilibrium where ω < ω̂ < ω̄.

To see this, focus on the function ω̄ → v (ω̄, 0; Γ(ω̄), ω̄, ω̂). It is a continuous function
of ω̄. When ω̄ = ω̂, since ω̂ < ω̂∗, using Lemma 5, we know that v (ω̂, 0; Γ(ω̂), ω̂, ω̂) < v̄.
When ω̄ → +∞, notice that v (ω̄, 0; Γ(ω̄), ω̄, ω̂) → +∞. Thus, the intermediate value
theorem can be applied, providing for the existence of at least one point ω̄ that satisfies:

v (ω̄, 0; Γ(ω̄), ω̄, ω̂) = v̄

Thus, (Γ(ω̄), ω̄) is an equilibrium with moderate minimum wage. □

Lemma 7. If ln bi > ω̂ >∗ ω̂, there exists at least one equilibrium where ω < ω̂ < ω̄.

We are first going to prove that when ln bi > ω̂ >∗ ω̂,

v (a(ω̂), 0; Γ (a(ω̂)) , a(ω̂), ω̂) = v (a(ω̂), 0; ω̂, a(ω̂), ω̂) < v̄

Note that:

v (ω̄, 0; ω̂, ω̄, ω̂) =
eω̄

ρ + λ − µ − 1
2 σ2

+
λv

ρ + λ
+ ζ1eη1(ω̄−ω̂)

(
1 − η1

η2
e(η2−η1)(ω̄−ω̂)

)
+ a1eη1ω̄ + a2eη2ω̄

This means:

v (ω̄, 0; ω̂, ω̄, ω̂) =
1

ρ + λ − µ − 1
2 σ2

eω̄ +
eη1ω̄

(
η2 − η1e(η2−η1)(ω̄−ω̂)

)
A(ω̂, ω̄, ω̂)

(−η1η2)(η2 − η1)
+

η2(η2 − 1)eη1(ω̄−ω̂) + η1(1 − η1)eη2(ω̄−ω̂)

(−η1η2)(η2 − η1)
eω̂

]
+

λv
ρ + λ

Then note that A (ω̂, a(ω̂), ω̂) = (1 − η1)(η2 − 1)e−η1ω̂(bi − eω̂). This means that when
ω̄ = a(ω̂), we have:
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v (a(ω̂), 0; ω̂, a(ω̂), ω̂) =
λv

ρ + λ

+

[
η2(1 − η1)eη1(a(ω̂)−ω̂) + η1(η2 − 1)eη2(a(ω̂)−ω̂)

]
bi + (−η1η2)

[
eη2(a(ω̂)−ω̂) − eη1(a(ω̂)−ω̂)

]
eω̂

(η2 − η1)(ρ + λ)

Note that this last expression is equal to v when ω̂ = ln bi. For ln
(

η2−1
η2

bi

)
< ω̂ <

ln bi, some algebra can show that the function ω̂ → v (a(ω̂), 0; ω̂, a(ω̂), ω̂) is decreas-
ing – this is obvious if one realizes that this function is identical to the function ω →
v (a(ω); ω, a(ω)) where v is the value function in the absence of minimum wage (see
(A26)), and for which Alvarez and Shimer (2011) has proven the monotonicity. Note also
that ω̂ → v (a(ω̂), 0; ω̂, a(ω̂), ω̂) has limit +∞ when ω̂ → ln

(
η2−1

η2
bi

)
and limit v when

ω̂ → ln bi. Finally, ∗ω̂ is the unique point that satisfies v (a(∗ω̂), 0; ,∗ ω̂, a(∗ω̂),∗ ω̂) = v̄.
In other words, we have demonstrated that so long as ω̂ ∈ (∗ω̂, ln bi), we have:

v (a(ω̂), 0; Γ (a(ω̂)) , a(ω̂), ω̂) < v̄

Since the function ω̄ → v (ω̄, 0; Γ (ω̄) , ω̄, ω̂) is continuous on [a(ω̂);+∞], with value
strictly less than v̄ at ω̄ = a(ω̂) and with limit +∞ as ω̄ → +∞, the intermediate value
theorem provides for the existence of ω̄ > a(ω̂) such that v (ω̄, 0; Γ(ω̄), ω̄, ω̂) = v̄. □

A.2.7.3 Low Minimum Wage

The existence and uniqueness of a non-binding minimum wage equilibrium is estab-
lished in Alvarez and Shimer (2011), whenever ω̂ <∗ ω̂, and the proof is thus omitted.
□

A.2.8 Hazard Rate of Exiting Unemployment

A.2.8.1 Irrelevance of Seniority when Entering Unemployment Spell

Consider a worker with seniority s who is rest unemployed whenever s < 1 − eθ(ω−ω̂).
Using the definition of ω in (36) and suppressing the dependence of these variables
on the labor market and minimum wage, we can write this as a condition relating the
number of more senior workers in the market, ℓ(1 − s), to the current productivity of
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the market x0,

ℓ(1 − s) >
(

Ax0

C

)θ−1

e−θω̂.

The worker exits rest unemployment and returns to this market the next time this in-
equality is violated, i.e. when productivity reaches x̂ solving

ℓ(1 − s) =
(

Ax̂
C

)θ−1

e−θω̂.

Conversely, she exits rest unemployment and leaves the market when she first reaches
state (ω, 0), which occurs at the productivity level x satisfying

ℓ(1 − s) =
(

Ax
C

)θ−1

e−θω,

so the log full employment wage is ω if there are ℓ(1− s) workers left in the market. She
also exits the market exogenously if she quits or the market breaks down, at rate λ =
q + δ. Thus the hazard of ending a spell of rest unemployment depends on competing
hazards of productivity rising to x̂ or falling to x. The key observation is that the ratio
of these two thresholds is monotone in the distance between ω̂ and ω,

ω̂ − ω =
θ − 1

θ

(
ln x̂ − ln x

)
,

and so is the same for all workers in a labor market, regardless of their seniority. □

A.2.8.2 Hazard Rate of Exiting Unemployment

Denote ur(t) (resp. us(t)) the duration-contingent rest (resp. search) unemployment
probability; the hazard of ending a (rest or search) unemployment spell of duration t,
h(t), is equal to:

h(t) = ĥr(t)
ur(t)

ur(t) + us(t)
+ α

us(t)
ur(t) + us(t)

,

where ur(t)
ur(t)+us(t)

is the probability that a worker with unemployment duration t is rest-
unemployed. For a search-unemployed worker, spells end at rate α, independent of
the duration of the spell. For a rest-unemployed worker, her spell ends when local
labor market conditions improve enough for her to reenter employment. The duration-
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contingent unemployment rates solve a system of two ordinary differential equations
with time-varying coefficients:

u̇r(t) = −ur(t)(δ + q + hr(t) + ĥr(t)) and u̇s(t) = −us(t)α + ur(t)(δ + q + hr(t)) (A40)

for all t > 0. The number of workers in rest unemployment falls as markets shut down
and workers exogenously quit, as they exit the market for search unemployment, and
as they reenter employment. In the first three events, they become search unemployed,
while search unemployment falls at rate α as these workers find jobs. To solve these
differential equations, we require two boundary conditions; however, to compute the
share of rest unemployed in the unemployed population with duration t, ur(t)

ur(t)+us(t)
, we

need only a single boundary condition,∫ ∞
0 ur(t)dt∫ ∞
0 us(t)dt

=
Ur

Us
, (A41)

where Ur and Us are given in equations (55) and (57). In other words:

ur(t) = ur(0) exp
[
−
∫ t

0

(
δ + q + hr(s) + ĥr(s)

)
ds
]

us(t) = e−αtus(0) +
∫ t

0
e−α(t−s)ur(s) (δ + q + hr(s)) ds

□

A.2.8.3 Hazard Rate Computations

Consider a Brownian motion with initial ω ∈ (ω, ω̂). Denote ψm ≡ 1
2

(
µ2

σ2 +
m2π2σ2

(ω̂−ω)2

)
the

eigen-values of the infinitessimal operator for ω(t). Let Ĝ(t; ·; ·) and G(t; ·; ·) denote the
cumulative distribution function for the times until each of the barriers is hit, conditional
on the initial value of ω:

Ĝ(t; ω̂, ω; ω) = Pr{Tω̂ ≤ t, Tω̂ < Tω |ω(0) = ω}
G(t; ω̂, ω; ω) = Pr{Tω ≤ t, Tω < Tω̂ |ω(0) = ω},
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with associated densities ĝ and g. Adam W. Kolkiewicz (2002, pp. 17–18) proves

ĝ(t; ω̂, ω; ω) =
πσ2

(ω̂ − ω)2

∞

∑
n=1

n(−1)n−1 sin
(

πn(ω − ω)

ω̂ − ω

)
e

µ(2(ω̂−ω)−µt)
2σ2 − π2n2σ2t

2(ω̂−ω)2

g(t; ω̂, ω; ω) =
πσ2

(ω̂ − ω)2

∞

∑
n=1

n(−1)n−1 sin
(

πn(ω̂ − ω)

ω̂ − ω

)
e
−µ(2(ω−ω)+µt)

2σ2 − π2n2σ2t
2(ω̂−ω)2 .

The hazard rate of the first hitting time, conditional on a rest unemployment spell start-
ing at time 0, i.e conditional on ω = ω̂, is

ĥr(t) ≡ lim
ω↑ω̂

ĝ(t; ω̂, ω, ω)

1 − Ĝ(t; ω̂, ω, ω)− G(t; ω̂, ω, ω)
and hr(t) ≡ lim

ω↑ω̂

g(t; ω̂, ω, ω)

1 − Ĝ(t; ω̂, ω, ω)− G(t; ω̂, ω, ω)
.

We compute this hazard rate in two steps. First, note that the survival distribution
function verifies:

1 − Ĝ(t; ω̂, ω; ω)− G(t; ω̂, ω; ω) =
∫ +∞

t

(
ĝ(s; ω̂, ω; ω) + g(s; ω̂, ω; ω)

)
ds

=
πσ2

(ω̂ − ω)2

∞

∑
n=1

n(−1)n−1 e−ψnt

ψn

(
e

µ(ω̂−ω)

σ2 sin
(

πn(ω − ω)

ω̂ − ω

)
+ e

−µ(ω−ω)

σ2 sin
(

πn(ω̂ − ω)

ω̂ − ω

))

This is the case since for t > 0, Fubini’s theorem applies on the interval [t,+∞). Indeed,
focusing on

∫ +∞
t ĝ(s; ω̂, ω; ω)ds for example, and for a fixed integer N, we have the

following bound:

πσ2

(ω̂ − ω)2

∫ +∞

t

N

∑
n=1

n
∣∣∣∣ sin

(
πn(ω − ω)

ω̂ − ω

) ∣∣∣∣e µ(2(ω̂−ω)−µs)
2σ2 − π2n2σ2s

2(ω̂−ω)2 ds

=
πσ2

(ω̂ − ω)2

N

∑
n=1

ne−ψnt

ψn
e

µ(ω̂−ω)

σ2

∣∣∣∣ sin
(

πn(ω − ω)

ω̂ − ω

) ∣∣∣∣
≤ πσ2

(ω̂ − ω)2

∞

∑
n=1

ne−ψnt

ψn
e

µ(ω̂−ω)

σ2 < +∞

The last inequality is due to the fact that ψn ∼ n2 and therefore the term e−ψnt guarantees
the convergence of the series when t > 0. A similar reasoning applies to

∫ +∞
t g(s; ω̂, ω; ω)ds.
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Using L’Hopital’s rule, and noting that:

−
[
Ĝω(t; ω̂, ω; ω̂) + Gω(t; ω̂, ω; ω̂)

]
= − π2σ2

(ω̂ − ω)3

∞

∑
n=1

n2 e−ψnt

ψn

(
1 − (−1)ne−

µ(ω̂−ω)

σ2

)
and that:

ĝω(t; ω̂, ω; ω̂) = − π2σ2

(ω̂ − ω)3

∞

∑
n=1

n2e−ψnt

g
ω
(t; ω̂, ω; ω̂) =

π2σ2e−
µ(ω̂−ω)

σ2

(ω̂ − ω)3

∞

∑
n=1

(−1)nn2e−ψnt,

one obtains the hitting time hazard rates ĥr(t) and hr(t):

ĥr(t) =
∑∞

m=1 m2e−tψm

∑∞
m=1

m2

ψm
e−tψm

(
1 − (−1)me−

µ(ω̂−ω)

σ2

) (A42)

hr(t) =
−∑∞

m=1 m2e−tψm(−1)me−
µ(ω̂−ω)

σ2

∑∞
m=1

m2

ψm
e−tψm

(
1 − (−1)me−

µ(ω̂−ω)

σ2

) . (A43)

□

A.2.8.4 Hazard Rate Limits

The hazard rate is particularly easy to characterize both at short and long durations.
From (A42) it can be seen that limt→0 h(t)t = 1/2. Alternatively, when t is small, we find
that ĥr(t) ≈ 1/(2t).

When t is large, the first term of the partial sum in (A42) dominates,

lim
t→∞

ĥr(t) =
ψ1

1 + e−
µ(ω̂−ω)

σ2

and lim
t→∞

hr(t) =
ψ1e−

µ(ω̂−ω)

σ2

1 + e−
µ(ω̂−ω)

σ2

.
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In addition, if α > δ + q + ψ1,

lim
t→∞

ur(t)
us(t)

=

(α − ψ1 − δ − q)
(

1 + e−
µ(ω̂−ω)

σ2

)
δ + q + (δ + q + ψ1)e

− µ(ω̂−ω)

σ2

,

while otherwise the limiting ratio is zero. Together this implies limt→∞ h(t) = min{α, ψ1 +
δ + q}, a function only of the slower exit rate. □

A.2.9 Random Allocation Model

It is straightforward to show that v satisfies the following differential equation, for ω ∈
[ωr, ω̄r] and ω ̸= ω̂:

(ρ + λ) v(ω; ω̂, ωr, ω̄r) = R(ω) + λv + µvω(ω; ω̂, ωr, ω̄r) +
1
2 σ2vωω(ω; ω̂, ωr, ω̄r)

Moreover, v is continuously differentiable at ω = ω̂ and must satisfy the boundary
conditions vω(ωr; ω̂, ωr, ω̄r) = vω(ω̄r; ω̂, ωr, ω̄r) = 0.

A.2.9.1 Intermediate minimum wage

In the case where ωr < ω̂ < ω̄r, the solution to the HJB equation takes the following
form

v(ω; ω̂, ωr, ω̄r) =


eω

ρ + λ − µ − 1
2 σ2

+
λv

ρ + λ
+ c̄1eη1(ω−ω̂) + c̄2eη2(ω−ω̂) if ω ≥ ω̂(

eω̂ − br
)

eθ(ω−ω̂)

ρ + λ − µθ − 1
2(σθ)2

+
br + λv
ρ + λ

+ c1eη1(ω−ω̂) + c2eη2(ω−ω̂) if ω < ω̂,

(A44)
where η1 < 0 < 1 < η2 solve (40) and the constants c̄1, c̄2, c1, c1 satisfy the boundary
conditions and the requirement that v be continuously differentiable at ω̂:

θ
(
eω̂ − br

)
eθ(ωr−ω̂)r

ρ + λ − µθ − 1
2(σθ)2

+ c1η1eη1(ωr−ω̂) + c2η2eη2(ωr−ω̂) = 0

eω̄r

ρ + λ − µ − 1
2 σ2

+ c̄1η1eη1(ω̄r−ω̂) + c̄2η2eη2(ω̄r−ω̂) = 0

81



eω̂

ρ + λ − µ − 1
2 σ2

+
λv

ρ + λ
+ c̄1 + c̄2 =

(
eω̂ − br

)
ρ + λ − µθ − 1

2(σθ)2
+

br + λv
ρ + λ

+ c1 + c2

eω̂

ρ + λ − µ − 1
2 σ2

+ η1c̄1 + η2c̄2 =

(
eω̂ − br

)
θ

ρ + λ − µθ − 1
2(σθ)2

+ η1c1 + η2c2

One can alternatively show that the value function can be expressed with the use of the
discounted occupancy function Π, defined via:

Π
(
ω′; ω; ω̂, ωr, ω̄r

)
≡ Eω

[∫ +∞

0
e−(ρ+λ)t Iω′ (ω(t)) dt

]
,

with Iω′ (ω) the indicator function equal to 1 when ω ≤ ω′ and zero otherwise. Argu-
ments similar to those in Alvarez and Shimer (2011) then show that

v(ω; ω̂, ωr, ω̄r) =
∫ ω̄r

ωr

[
min

(
eω, (1 − u(ω)) eω̂ + u(ω)br

)
+ λv

]
Πω′

(
ω′; ω; ω̂, ωr, ω̄r

)
dω′,

where the discounted local time function Πω′ (ω′; ω; ω̂, ωr, ω̄r) is only dependent upon
the roots η1, η2, as well as the barriers ω̂, ωr, ω̄r and the effective discount rate ρ + λ
(see Stokey (2008)). Arguments similar to those used in Alvarez and Shimer (2011), and
the fact that the period return function min

(
eω, (1 − u(ω)) eω̂ + u(ω)br

)
is monotone

increasing in ω, can then show that v is increasing in the arguments ω, ωr, ω̄r, and
strictly so when ωr < ω < ω̄r.

A.2.9.2 High minimum wage

In the case where ω̂ > ω̄r, the solution to the HJB equation takes the following form:

v(ω; ω̂, ωr, ω̄r) =

(
eω̂ − br

)
eθ(ω−ω̂)

ρ + λ − µθ − 1
2(σθ)2

+
br + λv
ρ + λ

+ c1eη1(ω−ω̂) + c2eη2(ω−ω̂) (A45)

where the constants c1, c2 satisfy the boundary conditions:

θ
(
eω̂ − br

)
eθ(ωr−ω̂)

ρ + λ − µθ − 1
2(σθ)2

+ c1η1eη1(ωr−ω̂) + c2η2eη2(ωr−ω̂) = 0

θ
(
eω̂ − br

)
eθ(ω̄r−ω̂)

ρ + λ − µθ − 1
2(σθ)2

+ c1η1eη1(ω̄r−ω̂) + c2η2eη2(ω̄r−ω̂) = 0
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Some algebra delivers

c1 =

(
θ

η1

)(
eω̂ − br

1
2(σθ)2 + µθ − (ρ + λ)

)(
eη2(ω̄r−ω̂)+θ(ωr−ω̂) − eη2(ωr−ω̂)+θ(ω̄r−ω̂)

eη1(ωr−ω̂)+η2(ω̄r−ω̂) − eη1(ω̄r−ω̂)+η2(ωr−ω̂)

)

c2 =

(
θ

η2

)(
eω̂ − br

1
2(σθ)2 + µθ − (ρ + λ)

)(
eη1(ωr−ω̂)+θ(ω̄r−ω̂) − eη1(ω̄r−ω̂)+θ(ωr−ω̂)

eη1(ωr−ω̂)+η2(ω̄r−ω̂) − eη1(ω̄r−ω̂)+η2(ωr−ω̂)

)
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