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1 Introduction

A large body of evidence suggests that inattention leads many borrowers to miss out on
mortgage refinancing opportunities that could save them significant amounts of money.
Without a benchmark model of optimal refinancing, it is difficult to know how sub-
optimal this behavior is. In this paper, we characterize the impact of inattention on
fixed-rate mortgage borrowers’ optimal refinancing decisions and show that inattention
is important for explaining refinancing patterns observed in the data. In our model,
borrowers pay attention to rates sporadically, which means they often fail to refinance
even when their “rate gap” — the difference between their current rate and the available
rate on a new mortgage — is large. However, when they do pay attention, they optimally
choose to refinance for smaller rate gaps than in a model with perfect attention. Thus,
inattention can explain both errors of “omission” (refinancing too slowly) and errors of
“commission” (refinancing too quickly) documented in the data.1

We begin with an analysis of the borrower’s optimal decision when mortgage rates
follow a general class of Markov processes. Borrowers have a fixed-rate prepayable mort-
gage contract that can be refinanced at any time, but their cost-minimization objective is
hindered by two different frictions: (i) whenever they refinance, they have to pay a fixed
cost, and (ii) they only pay attention to the market sporadically. Borrowers optimally
refinance when they pay attention and their rate gap is above a threshold. We show that
greater inattention systematically lowers this threshold. While we prove this systematic
relationship holds under a very general class of mortgage rate processes, assessing its
magnitude requires further assumptions.

For most of the paper, we thus specialize the mortgage rate to be a Brownian mo-
tion, which delivers analytical solutions for optimal refinancing. With this assumption,
our model is then identical to that of Agarwal, Driscoll and Laibson (2013) (thereafter,
“ADL”), except that our borrowers are inattentive and can only make decisions at dis-
crete points in time. In this Brownian motion special case, we analytically solve the
borrower’s value function and the rate gap threshold at which refinancing is optimal.
At the limit where borrowers are infinitely attentive, we recover the ADL threshold for-
mula, but we show that this threshold falls substantially for empirically relevant levels of
attention and can thus matter quantitatively for empirical work estimating the frequency
and magnitude of mistakes in refinancing decisions.

This key result is robust to two important extensions. First, while our analytical
results are obtained when mortgage rates follow a Brownian motion, conclusions are

1See Agarwal, Rosen and Yao (2016).
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quantitatively similar when mortgage rates are instead mean-reverting. Second, we
micro-found inattention by studying a perfectly attentive borrower who pays a cost each
time they decide to observe the current mortgage market rate. This rational inattention
framework delivers an optimal threshold that is decreasing in the observation cost, an
ergodic average observation delay that is increasing in the observation cost, and thus a
threshold that is increasing in the effective attention rate, like in our baseline model that
takes inattention as exogenous.

We then derive our baseline model’s implications for the ergodic distribution of rate
gaps, and rate gaps upon refinancing. By aggregating individual-level refinancing deci-
sions and characterizing the distribution of refinancing incentives, we derive a sufficient
statistic that we use to infer the degree of inattention faced by mortgage borrowers in the
US. While the average gap is strictly lower than the optimal threshold, we show that the
average gap upon refinancing is exactly equal to the threshold. The difference between
these two averages only depends on (i) the borrower’s moving rate, (ii) the borrower’s
attention rate, and (iii) mortgage rate volatility. This observation yields a sufficient statis-
tic approach, which relies on the estimation of these two empirical averages in order to
recover the implied attention rate in a borrower population of interest.

Finally, we bring our model to the data to quantify the empirical relevance of inatten-
tion for optimal refinancing. Using our framework, we estimate the level of inattention
required to rationalize our micro-data on rate gaps and prepayments. With this estimate,
we compute borrowers’ rate gap thresholds in the presence of inattention and quantify
the frequency of errors of commission and omission. We then compare the frequency
of these errors to that implied by the ADL framework, which assumes perfect attention.
We find that the model with inattention, naturally, removes almost all errors of omission,
and reduces the number of errors of commission by 35-46%.

2 Literature

Our paper is most related to Agarwal, Driscoll and Laibson (2013), who derive an an-
alytic expression for the rate gap threshold at which households should be optimally
refinancing their long-term fixed rate mortgage. We extend their model by introducing
an inattention friction — in the spirit of Calvo (1983) — and by showing that such friction
dampens the threshold at which borrowers find it optimal to refinance. We also study
more general mortgage rate processes and characterize the effects of inattention on the
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distribution of rate gaps.2

Many empirical investigations of mortgage refinancing decisions document some
type of mistakes by borrowers (for e.g. Keys, Pope and Pope (2016) or Andersen et al.
(2020), amongst many others). Agarwal, Rosen and Yao (2016) separate these mistakes
into (i) errors of commission (refinancing at the “wrong” rate gap) and (ii) errors of omis-
sions (not immediately refinancing once the rate gap threshold is reached). We show in
our paper that our framework can rationalize both types of errors.

The study of the optimal prepayment strategy includes numerous articles from a
separate literature focused on the valuation of mortgage-backed securities (“MBS”). The
paper most related to ours is Stanton (1995) who, using aggregate prepayment data from
a set of MBS, estimates a model that features (heterogeneous) fixed costs of refinancing
and (homogeneous) inattention. Solving the model via backward induction, the article
finds that borrowers (i) face heterogeneous fixed costs and (ii) exhibit substantial amount
of time-dependent inaction. Our study, rather than relying on numerical methods, in-
stead derives an analytic formula for borrowers’ optimal refinancing strategy, and it uses
mortgage-level (rather than pool-level) micro-data to estimate inattention in the data.

Finally, our paper relates to the role of inattention for the exercise of options beyond
mortgage refinancing. For example, Kadan, Liu and Yang (2009) derive the value of
executive stock options when the executive is inattentive and show that the optimal ex-
ercise barrier is increasing in the attention rate. Thus, they conclude similarly that agents
should exercise their option at lower “intrinsic values”, once they get the opportunity to
do so.

3 Mortgage refinancing with inattention: general case

We consider a model of mortgage refinancing decisions similar to that in Berger et al.
(2023). We study fixed-rate mortgages that can be refinanced at any time — a contract
chosen by the majority of borrowers in the US. We specify an exogenous process for the
mortgage rate.

2An older version of their paper also included some overlapping conclusions related to inattention. We
thank John Driscoll for alerting us to and sharing those results, which do not appear in the published
paper. Our results also differ in some important ways from this unpublished material: we analyze more
general rate environments as well as the optimal choice of attention, explore distributional implications,
and have a more extensive empirical application.
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3.1 Setup

Time t is continuous. We consider a risk-neutral, long-lived borrower with subjective
discount rate ρ. The borrower has financed the purchase of a house with a long-term
fixed-rate prepayable mortgage with coupon ct and constant unit balance. Let mt be the
prevailing mortgage rate, i.e., the rate that can be locked in when refinancing at time
t. Two separate frictions limit the borrower’s refinancing ability. First, the borrower is
inattentive and makes decisions only at discrete times, modeled as i.i.d. Poisson events
occurring with intensity λ — the attention rate. Second, the borrower bears closing costs
ψ when refinancing. Last, the borrower moves from one house to another at intensity ν;
when doing so, the mortgage coupon gets reset to the prevailing mortgage rate.3

We assume that the mortgage rate is a smooth function m(·) of a latent state vector
xt, a possibly multidimensional, time-homogeneous Itô process with drift µ(x), diffusion
σ(x) and infinitesimal generator L.4

3.2 The role of inattention

Denote V (x, c) the valuation of all future mortgage liabilities for a borrower paying a
coupon c, when the latent state is x. The borrower solves

V(x, c) : = inf
a∈A

Ex,c

[∫ +∞

0
e−ρt

(
c(a)

t dt + atψdN(λ)
t

)]
, (1)

s.t. dc(a)
t =

(
m(xt)− c(a)

t−

) (
atdN(λ)

t + dN(ν)
t

)
,

where A is a set of progressively measurable binary actions a = {at}t≥0 such that at ∈
{0, 1} at all times, N(λ)

t and N(ν)
t are counting processes with jump intensity λ and ν, c(a)

t

is the coupon rate on the mortgage for a borrower following strategy a, and the subscript
on the expectation indicates that it is conditional on the information available at time t.
At the random points in time when the borrower can pay attention, the choice at = 1
represents a decision to refinance, while at = 0 means that the borrower chooses to keep
their existing mortgage.

A straightforward application of stochastic control theory, in connection with techni-
cal conditions related to the generator L5, yields a valuation V that solves

(ρ + ν + λ)V(x, c) = c + νV(x, m(x)) + λ min {V(x, c), V(x, m(x)) + ψ}+LV(x, c), (2)

3Moving-related fixed costs could be added to the model without changing any of our conclusions.
4L is defined over functions f of class C2 via L f (x) = µ(x) · ∂x f (x) + 1

2 trace (σ′(x)∂xx′ f (x)σ(x)).
5See Strulovici and Szydlowski (2015) or Fleming and Soner (2006) for example.
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with an optimal refinancing choice that satisfies a∗(x, c) = 1{c−m(x)≥θ(x)}, where the
threshold θ(x) satisfies the indifference condition

V(x, m(x)) + ψ = V(x, m(x) + θ(x)). (3)

According to (3), whenever the current mortgage coupon is θ(x) above the current mort-
gage rate m(x), the borrower is indifferent between (i) refinancing the mortgage, paying
the fixed cost ψ and resetting the coupon to the current rate m(x), and (ii) staying put.
In our first proposition (proven in Appendix A.1), we study the extent to which the
threshold θ(x) varies with the degree of borrower inattention.

Proposition 1 Assume that the valuation V is differentiable in the parameter λ. The optimal
rate gap threshold θ(x) is an increasing function of λ.

Lower attention reduces the threshold, so borrowers optimally choose to refinance
for smaller rate gaps when paying attention, since they only pay attention to rates spo-
radically. Intuitively, inattentive borrowers “pull the trigger” earlier when given the
opportunity to refinance, since they might not have the opportunity to refinance again
for some time.

4 Mortgage rates as a random walk

Proposition 1 establishes a general result that relies only on weak assumptions on the
statistical properties of the mortgage rate. In this section, we characterize analytically
the threshold θ(x) in the special case where mortgage rates follow a random walk.

Proposition 2 Assume that mt is a Brownian motion with volatility σ. Introduce the constants
η0, ηλ and ϵλ, equal to:

η0 :=

√
2 (ρ + ν)

σ
ηλ :=

√
2 (ρ + ν + λ)

σ
ϵλ :=

(ρ + ν) (η0 + ηλ)

λ
.

The borrower valuation satisfies V(m, c) = c
ρ + v(z), with z := c − m and

v(z) =

k−eη0(z−θ) + ν
ρ+ν

[
v(0)− z

ρ

]
if z ≤ θ

k+e−ηλ(z−θ) + ν
ρ+ν+λ

[
v(0)− z

ρ

]
+ λ

ρ+ν+λ

[
v(0) + ψ − z

ρ

]
if z ≥ θ.

(4)
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The constants of integration k−, k+ are given in Appendix A.2, and v is a strictly decreasing and
concave function of z. The (state-independent) rate gap threshold θ > 0 is given by

θ = (ρ + ν)ψ +
1

η0 + ϵλ
+

1
η0

W
(

−η0

η0 + ϵλ
exp

{
−η0

η0 + ϵλ
[1 + (ρ + ν) (η0 + ϵλ)ψ]

})
, (5)

where W is the Lambert-W function. θ increases with the attention rate λ, and asymptotically:

lim
λ→0

θ = (ρ + ν)ψ (6)

lim
λ→+∞

θ = (ρ + ν)ψ +
1
η0

+
1
η0

W (− exp {− [1 + (ρ + ν)η0ψ]}) . (7)

A Taylor expansion of the implicit equation underlying (5) around θ = 0 yields an approximation
θ̂ of the threshold θ with formula:

θ̂ =

√√√√ 2
η0

(
1 +

ϵλ

η0

)
(ρ + ν)ψ +

(
ϵλ

η2
0

)2

− ϵλ

η2
0

. (8)

Our proof in Appendix A.2 relies on the observation that the value function can be
decomposed into (i) the present value of all future interest payments c/ρ (based on the
current mortgage coupon) plus (ii) the value of a refinancing option which, given the
unit root behavior of mortgage rates, only depends on the rate gap z.

Proposition 2 generalizes the results of Agarwal, Driscoll and Laibson (2013) to the
case where borrowers are inattentive. Formula (6) suggests that a completely inattentive
borrower should only refinance when its rate gap is above the flow value of the fixed
cost (ρ + ν)ψ. At the other extreme, if the borrower is infinitely attentive, the threshold
reduces to the ADL formula (7). Importantly, a decrease in λ reduces the threshold —
a special case of the more general result of Proposition 1. Figure 1a illustrates how the
threshold θ given in (5) varies with attention λ, and also the degree of precision of our
approximation formula (8). Given our estimated borrower attention (see Section 7) and
parameter values consistent with Figure 1a, the rate gap threshold with inattention is
54-65% smaller than that in the perfect attention benchmark, depending on the assumed
mortgage rate volatility.6

This analysis sheds new light on empirical studies focusing on mistakes made by bor-

6Using our preferred value σ = 0.70%, Section 7 estimates an attention rate λ = 23.4% p.a., which
leads to a threshold θ = 0.46%, which is 54% smaller than the relevant ADL threshold; assuming instead
σ = 1.00% (used by Agarwal, Driscoll and Laibson (2013) and others), Section 7 estimates an attention
rate λ = 11.8% p.a., which leads to a threshold θ = 0.41%, which is 65% smaller than the relevant ADL
threshold.
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rowers in connection with their refinancing decisions. Agarwal, Rosen and Yao (2016)
and Fuster et al. (2019), for instance, conclude that borrowers refinance at rate gaps that
are on average too small relative to the ADL threshold — what the former article refers
to as errors of commission.7 Once we take into account the fact that borrowers exhibit
inattention, their rate gap thresholds are reduced significantly. Rather than making mis-
takes (by refinancing at excessively low rate gaps, as these empirical studies suggest),
borrowers may act rationally, refinancing aggressively when they have the chance, sub-
ject to their attention friction. Similarly, both articles find that borrowers wait too long
before refinancing, once their rate gap reaches the theoretically optimal threshold —
sometimes referred to as errors of omission. With inattention, borrowers naturally wait a
random amount of time before “pulling the trigger” to refinance, and that random delay
depends on the degree of attention of the borrower. We investigate these two types of
errors systematically in Section 7.

5 Extensions

In this section, we investigate two extensions of our benchmark model. In the first, we
show that our results are quantitatively insensitive to our assumption that mortgage
rates follow a random walk. In the second, we micro-found inattention by introducing
(pecuniary) observation costs, and show that the key insight of Section 4 remains.

5.1 Mean-reverting mortgage rates

Section 4 relies on the assumption that the mortgage rate mt is a random walk — a
strongly debated empirical question.8 When mortgage rates are mean-reverting, refi-
nancing decisions are necessarily state dependent, i.e., θ = θ(x). To what extent does
mean reversion alter a borrower’s threshold? To address this question we analyze mort-
gage rates that follow an Ornstein-Uhlenbeck process:

dmt = −χ(mt − m̄)dt + σdBt (9)

7Agarwal, Rosen and Yao (2016) find that borrowers refinance at rate gaps with an average of 121 bps,
relative to the average ADL threshold of 158 bps. Similarly, Fuster et al. (2019) find that among refinancing
borrowers, more than half of the refinancings are executed at rates that are too small when assessed against
the ADL threshold.

8Stock and Watson (1988) conclude that various short term interest rates appear to contain a unit root;
Perron (1989) cannot reject the unit root hypothesis at a 10% level, but can reject at lower levels; more
recently, Bierens (1997) conducts various tests, some of them rejecting, and others failing to reject the unit
root hypothesis, and concludes that the short term rate is a nonlinear trend stationary process.
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Figure 1: Rate gap threshold θ

(a): Benchmark model
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2
ra

te
 g

ap
 th

re
sh

ol
d 

θ 
(%

)

1 10 100 1000 ∞
λ  (% p.a.)

σ =  0.70%
σ =  1.00%

(b): Rational inattention model
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Left-hand side: solid (dashed) lines show the threshold θ (approximation θ̂) as a function of attention λ
in the benchmark model of Section 4. The horizontal dotted purple line shows the limit of θ when λ → 0
and the dotted red and blue lines show the limit as λ → +∞. Right-hand side: threshold θ as a function of
the effective attention rate, defined as 1/E [T(z)], with T(z) the observation delay when the rate gap is z,
when varying the observation costs ϕ, in the rational inattention model of Section 5.2. Figures computed
assuming ρ = 5%, ν = 11.33%, ψ = 2% and for two different mortgage rate volatilities σ = 0.70% and
σ = 1.00%.

This specification nests the special case of the Brownian motion studied in Section 4, by
setting χ = 0.

We solve our model numerically and find that the average threshold E[θ(mt)] is
barely affected by the persistence of mortgage rates.9 Using our baseline parameters, the
average threshold is at most 2 bps away from the benchmark case studied in Section 4,
even as we vary the half-life from 1 to 20 years.10 Thus, our conclusions are very similar
when using stationary mortgage rates instead of assuming a random walk like in our
baseline model. We maintain the simpler random walk assumption for the remainder of
the paper.

9This conclusion is robust to a broad range of realistic attention rates and mortgage volatility parame-
ters — not only those we estimate empirically.

10This half-life is equal to ln(2)/χ.
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5.2 Rational inattention

Next, consider an environment in which the borrower makes decisions continuously,
but must pay a cost ϕ to observe the current mortgage rate, and a cost ψ to refinance.
Each time the borrower observes the market, they decide (i) whether or not to refinance,
and (ii) the length of time T until their next market observation. The borrower’s refi-
nancing option value remains a function of the rate gap z, and the optimal refinancing
strategy remains a cutoff — i.e. refinance at an observation date whenever the rate gap
satisfies z ≥ θ, for an optimally chosen threshold θ. Different from our benchmark
model, the borrower now optimally picks their next observation date T(z) as a func-
tion of the current rate gap, balancing (i) the cost ϕ of paying attention with (ii) the
future potential benefit of refinancing, if the rate gap at such time is above the threshold.
This extended version of our model delivers rational inattention, as in Abel, Eberly and
Panageas (2007); given the observation costs, the borrower chooses an optimal observa-
tion delay T(z) (and thus an implicit attention time).

Appendix A.4 develops the mathematical notation for this extension. We solve our
model numerically and compute, for a range of observation costs ϕ, (i) the optimal
rate gap θ at which borrowers refinance and (ii) the ergodic average attention delay
E [T(z)]. We plot in Figure 1b the threshold θ vs. the effective attention rate 1/E [T(z)]
for two different mortgage rate volatilities. We find that (a) the optimal rate gap at which
to refinance θ is a decreasing function of the observation cost, (b) the ergodic average
attention delay E [T(z)] is an increasing function of the observation cost, resulting in an
upward sloping relationship between the optimal rate gap θ and the effective attention
rate — echoing our insight from previous sections.

6 Distributional implications

Now that we have explore implications for individual decisions, we next discuss the
resulting implications of the benchmark model of Section 4 for the distribution of rate
gaps, and the distribution of rate gaps upon refinancing. These distributions are not only
easily measurable in the data, but they have also been the focus of a component of the
household finance literature measuring the magnitude and frequency of mistakes made
by households in their refinancing decisions. Under the assumptions of Proposition 2,
while the mortgage rate is non-stationary, the rate gap zt admits an ergodic density f (z):

f (z)dz := lim
t→+∞

1
t

∫ t

0
1{zt∈[z,z+dz]}dt. (10)
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The density f can be characterized analytically, as the next proposition shows.

Proposition 3 Assume that mt is a Brownian motion with volatility σ. Introduce the constants
χ0 and χλ equal to:

χ0 :=

√
2ν

σ
χλ :=

√
2 (ν + λ)

σ
.

The rate gap zt admits an ergodic density f that is an asymmetric Laplace distribution:

f (z) =
1

1
χ0

+ 1
χλ

exp (χ0(z − θ)) if z ≤ θ

exp (−χλ(z − θ)) if z ≥ θ
(11)

Instead, the rate gap upon prepayment admits an ergodic density f̂ equal to

f̂ (z) =
1(

1
χ0

+ 1
χλ

)
ν + λ

χλ

ν exp (χ0(z − θ)) if z ≤ θ

(ν + λ) exp (−χλ(z − θ)) if z ≥ θ
(12)

The following ergodic statistics admit analytic expressions

average prepayment rate = lim
t→+∞

1
t

(
N(ν)

t +
∫ t

0
asdN(λ)

s

)
= ν +

(
χ0

χ0 + χλ

)
λ (13)

average rate gap = lim
t→+∞

1
t

∫ t

0
zsds = θ +

1
χλ

− 1
χ0

(14)

average rate gap upon prepay = lim
t→+∞

∫ t
0 zs−

(
dN(ν)

s + asdN(λ)
s

)
N(ν)

t +
∫ t

0 asdN(λ)
s

= θ (15)

See proof in Appendix A.3. Figure 2 illustrates these model-implied densities, and re-
lates them to their empirical counterpart, computed using a sample of 30-year fixed-rate
mortgages from Fannie Mae’s Single-Family Loan Performance (“SFLP”) data. Formula
(13) tells us that the long-term average prepayment rate is between ν (the non-strategic
prepayment rate) and ν + λ whereas formula (14) suggests that the average rate gap in
this model is below the threshold θ — both intuitive results. Formula (15) is however
more surprising; indeed, given the threshold θ and borrowers’ optimal strategy to wait
for the rate gap to be above this threshold before refinancing (at a point in time where
they are attentive), one might have expected the ergodic average rate gap upon prepay-
ment to be greater than θ. Instead, this ergodic average is exactly equal to θ due to a
second, countervailing force: whenever the rate gap is below θ, borrowers prepay at a
low intensity ν, allowing the rate gap to reach values materially lower than θ, thereby
pushing the ergodic average gap upon prepayment downwards. This latter result is
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important in another way. So far, Section 3 and Section 4 have shown that higher inat-
tention makes borrowers want to refinance at lower rate gaps (relative to the perfect
attention benchmark) when they have the opportunity to do so. This does not necessarily
mean that on average, inattentive borrowers refinance their mortgage at lower rate gaps,
since inattention “slows down” borrowers. The result in this section that the average rate
gap upon prepayment is exactly equal to θ means that the average gap upon prepayment
is also an increasing function of the attention rate.

Figure 2: Rate gap density: theory vs data.
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Theoretical (left-hand side) and empirical (right-hand side) rate gap distribution f (z) (solid lines) and rate
gap upon prepayment distribution f̂ (z) (in dash lines) for two mortgage rate volatilities. The left-hand
side assumes that mt is a Brownian motion, and is computed using parameters ρ = 5%, ν = 11.33%,
ψ = 2% and attention rates estimated in Section 7.

Moreover, (14) and (15) are measurable in the data and deliver a sufficient statistic to
measure the effective attention rate of a population of borrowers:

(avg rate gap upon prepay)− (avg rate gap) =
σ√
2

(
1√
ν
− 1√

ν + λ

)
(16)

Formula (16) is useful since, conditional on two moments measurable in the data and
assumptions on only (i) the moving rate ν and (ii) the mortgage rate volatility σ, we can
recover the effective attention of a population of interest, irrespective of the values of
the subjective discount rate ρ or the closing costs ψ. We use this approach in Section 7
to estimate the average attention rate in the population of agency mortgage borrowers
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using SFLP data.11

7 Empirical study

Many papers use the ADL formula to study the degree and magnitude of refinancing
mistakes made by borrowers (Keys, Pope and Pope, 2016; Agarwal, Rosen and Yao,
2016; Fuster et al., 2019). Given parameter values ψ, ν, σ and ρ, these studies compute
the threshold at which a borrower should be optimally refinancing. Borrowers observed
with rate gaps above the ADL threshold are labeled as making “errors of omission”,
while borrowers refinancing at rate gaps below the ADL threshold are labeled as making
“errors of comission”. Our model can rationalize both type of errors: inattentive borrow-
ers make decisions at discrete points in time, which means that they will frequently be
observed at rate gaps above the threshold θ; and inattention lowers their optimal thresh-
old, thereby reducing the number of errors of omission that an econometrician would
measure in the data.

To illustrate our point, we use a 2% random sample of 30-year fixed rate mortgages
originated between January 1999 and September 2023, for which we have origination
and performance data from the SFLP dataset. For each mortgage-month observation,
we compute the mortgage rate available to borrowers refinancing at such time.12 This
allows us to estimate rate gaps for each mortgage over its life, controlling for observ-
ables that drive mortgage rates at origination. The right-hand side of Figure 2 shows
the empirical distribution of rate gaps and rate gaps upon prepayment in our data. We
then use the summary statistic (16) to determine the attention rate in our borrower pop-
ulation, assuming a mortgage rate volatility of either σ = 0.70% (the relevant empirical
value for our sample period) or σ = 1.00% (the value used by Agarwal, Driscoll and
Laibson (2013)), and a moving/amortization rate ν = 11.33%.13 Given an average rate
gap of 0.15% and average rate gap upon prepayment of 0.78%, inverting (16) leads to an

11It is important to emphasize that the distributions f and f̂ are long run rate gap distributions, which
would be obtained if we follow one borrower for an arbitrarily large amount of time. In other words, f
does not characterize the cross-sectional distribution of rate gaps at a particular point in time, but rather
the average cross-sectional distribution of rate gaps over an arbitrarily long time-horizon.

12With our origination data, we regress mortgage coupons onto (i) original LTV, (ii) original FICO, (iii)
original principal balance, (iv) dummy for loan purpose, and (v) origination-month fixed effects. For each
mortgage-month, we then use our linear model to estimate the rate at which the borrower could refinance,
taking into account the then-current mortgage balance and LTV, computed using HPI at the 3-digit zip
obtained from the FHFA.

13Focusing on the prepayment rate for households with negative rate gaps allows us to estimate an
average moving rate of 8% p.a., to which we add the amortization rate of 1/30, leading to our parameter
choice ν = 11.3%.
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attention rate of λ = 23.4% (when σ = 0.70%) or λ = 11.8% (when σ = 1.00%).14

For each mortgage-month observation (i, t) and for both mortgage rate volatilities
considered, we then compute the optimal rate gap threshold θ∞,it under the perfect
attention benchmark, and the corresponding threshold θit under our estimated attention
rates.15 These calculations allow us to quantify the frequency and magnitude of errors
of omission and of commission imputed by both models, which we show in Table 1.

Table 1: Errors of omission and of commission

Perfect With Perfect With
Attention Inattention Attention Inattention

mortgage rate (annual) volatility σ 0.70% 0.70% 1.00% 1.00%

average threshold θit 1.09% 0.75% 1.27% 0.71%

errors of omission

mortgage-month obs (M) with zit > θit 7.07 10.86 5.43 11.47
nb of prepayments (M) when zit > θit 0.21 0.3 0.16 0.31
empirical monthly prepay rate when zit > θit 2.97 2.77 3.01 2.72
theoretical monthly prepay rate when zit > θit 100 2.85 100 1.91

errors of commission

mortgage-month obs (M) with zit < θit 28.35 24.56 29.99 23.95
nb of prepayments (M) when zit < θit 0.31 0.21 0.35 0.2
empirical monthly prepay rate when zit < θit 1.08 0.87 1.17 0.85
theoretical monthly prepay rate when zit < θit 0.94 0.94 0.94 0.94

mortgage-month obs (M) with 0 < zit < θit 13.67 9.88 15.31 9.27
nb of prepayments (M) when 0 < zit < θit 0.21 0.12 0.26 0.11
empirical monthly prepay rate when 0 < zit < θit 1.57 1.24 1.7 1.2

mortgage-month obs (M) with zit < 0 14.68 14.68 14.68 14.68
nb of prepayments (M) when zit < 0 0.09 0.09 0.09 0.09
empirical monthly prepay rate when zit < 0 0.62 0.62 0.62 0.62

Random sample of 780k mortgages issued between January 1999 and September 2023 (mortgage rate
volatility over that sample period is estimated to be equal to 0.70% per year). Panel consists of 35.42M
mortgage-month observations. Prepayment rates are expressed in % per month.

Comparing the model with inattention to the model with perfect attention in Table 1,

14These relatively low estimates for the attention rate are in part due to the trend decline in mortgage
rates from the early 80s to 2022, causing the empirical average rate gap to be biased upwards relative to
the theoretical ergodic value, thereby potentially biasing downwards our attention rate estimate.

15To compute the optimal rate gaps θ∞,it and θit, we use an approach consistent with Agarwal, Driscoll
and Laibson (2013): we assume refinancing costs of $2,000 plus 1% of outstanding loan balance, a tax rate
of 28% — since mortgage interest is assumed to be tax deductible — and a subjective discount rate ρ = 5%.
We keep ν = 11.33% and in order to compute θit, we use the estimated attention rate consisted with our
mortgage volatility assumption. The i, t dependence of the threshold stems from the time-varying balance
of the mortgage and the assumed fixed costs that do not scale with loan balance.
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several takeaways emerge. For brevity, we focus on the results with σ = 0.70%, but
conclusions are similar for the case σ = 1.00%. First, as expected, the average optimal
threshold θ is significantly lower in the calibrations with inattention than those with per-
fect attention. Second, 2.97% of mortgage-month observations with a rate gap above the
ADL threshold θ∞ end up prepaying, supporting the analysis from previous academic
work suggesting that borrowers make frequent errors of omission, under the assumption
that they are perfectly attentive. Once we factor in their inattention, 2.77% of mortgage-
month observations with a rate gap above the threshold θ end up prepaying, vs. a
theoretical prepayment rate of 2.85%; in other words, inattention rationalizes almost all
errors of “omission”.16 Third, about 310k prepayments occur at rate gaps that are too
low relative to the ADL threshold θ∞ — what the literature labels errors of commissions.
Taking into account borrower inattention reduces the optimal threshold, so that 32% of
these errors of commission in the perfect attention model can instead be rationalized by
the model with inattention.17 Thus, our model of mortgage refinancing with inatten-
tion considerably reduces the two types of mistakes identified in the previous literature,
at the same time emphasizing the significant role played by inattention frictions in the
data.

8 Conclusion

Fixed-rate mortgage refinancing decisions are hindered by various frictions — both be-
havioral, as well as financial. These frictions interact in non-trivial ways, such that more
inattention leads borrowers to refinance earlier, when they have the opportunity to do so.
The inattention friction can help rationalize why borrowers both (i) refinance too “early”
(compared to a full attention benchmark) and (ii) wait too long to refinance, when it is
profitable for them to do so. Our model of borrower behavior also has consequences
for the distribution of rate gaps, which can be informative of the degree of state- and
time-dependent frictions faced by borrowers.

16The theoretical prepayment rate for these observations is 1 − exp (−(λ + ν)dt), with dt = 1/12 years.
17It is worth noting that the SFLP data does not differentiate prepayments occurring due to refinancing,

vs. moves. If one were to assume that all prepayments occurring at zit < 0 are actually moves, and if
one were to label as errors of omissions only those prepayments occurring when 0 < zit < θ, then 210k
prepayments occur at rate gaps that are too low relative to the ADL threshold, amongst which 43% could
be rationalized with our borrower inattention model.
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A Appendix

A.1 Effect of inattention on threshold

Proof of Proposition 1. Consider equation (2) satisfied by V, and differentiate w.r.t. λ:

(ρ + ν + λ) ∂λV(x, c) = min (V(x, m(x)) + ψ − V(x, c), 0) + ν∂λV(x, m(x))

+ λ
[
1{c−m(x)≥θ(x)}∂λV(x, m(x)) + 1{c−m(x)<θ(x)}∂λV(x, c)

]
+ L∂λV(x, c)

Noting τ a Poisson time with arrival rate ν + λ1{c−m(xt)≥θ(xt)}, then

∂λV(x, c) = Ex

[∫ τ

0
e−ρt min (V(xt, m(xt)) + ψ − V(xt, c), 0) dt

+e−ρτ∂λV(xτ, m(xτ))
]

(A.1)

∂λV(x, c) < 0 since a borrower with a higher attention rate must have a lower present
value of future mortgage costs. The source term min (V(xt, m(xt)) + ψ − V(xt, c), 0) in
(A.1) is decreasing in c, which means that ∂λV(x, c) must also be decreasing in c. Con-
sider then (3) and differentiate w.r.t. λ:

∂λV(x, m(x)) = ∂λV(x, m(x) + θ(x)) + ∂λθ(x)∂cV(x, m(x) + θ(x))

Thus, we have

∂λθ(x) =
∂λV(x, m(x))− ∂λV(x, m(x) + θ(x))

∂cV(x, m(x) + θ(x))
(A.2)

V is increasing in c, which means that the denominator in (A.2) is positive. Similarly,
we have established above that ∂λV(x, c) is decreasing in c, meaning that we must have
∂λV(x, m(x)) > ∂λV(x, m(x) + θ(x)). Thus θ(x) is increasing in λ.

A.2 Special case: mt as a Brownian motion

Proof of Proposition 2. Assume that mt = σBt + m0, with Bt a Brownian motion. V,
solution of (1), satisfies V(m, c) = c

ρ + v(z), where z = c − m is the rate gap and

v(z) : = inf
a∈A

Ez

[∫ +∞

0
e−ρt

[(
ψ −

z(a)
t−
ρ

)
atdN(λ)

t −
z(a)

t−
ρ

dN(ν)
t

]]
(A.3)

dz(a)
t = −σdBt − z(a)

t−

(
atdN(λ)

t + dN(ν)
t

)
. (A.4)

Consider z1 < z2, an arbitrary feasible policy a ∈ A, and denote by v(z; a) the option
value under policy a. Denote z(a)

i,t for i ∈ {1, 2} the rate gap under policy a with starting
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point zi, then

v(z2; a)− v(z1; a) = E

e−ρτ

z(a)
1,τ− − z(a)

2,τ−
ρ

 ,

where τ is the first refinancing time under policy a. Since z1 < z2, then z(a)
1,τ− < z(a)

2,τ−
a.s., which means that v(z2; a) < v(z1; a). Since a was chosen arbitrarily, v is strictly
decreasing in z. Similarly, take z1 < z2 and λ ∈ (0, 1), and let a∗λ ∈ A be the optimal
strategy under starting point zλ := λz1 + (1 − λ)z2. Let τ∗

λ be the first refinancing time

under a∗λ, and notice that for t ≤ τ∗
λ , z(a∗λ)

λ,t = λz(a∗λ)
1,t + (1 − λ)z(a∗λ)

2,t . This means that

v(zλ) = Ezλ

∫ τ∗
λ

0
e−ρt

ψ −
z(a∗λ)

λ,t−
ρ

 a∗λ,tdN(λ)
t −

z(a∗λ)
λ,t−
ρ

dN(ν)
t

+ eτ∗
λ v(0)


= λEz1

∫ τ∗
λ

0
e−ρt

ψ −
z(a∗λ)

1,t−
ρ

 a∗λ,tdN(λ)
t −

z(a∗λ)
1,t−
ρ

dN(ν)
t

+ eτ∗
λ v(0)


+ (1 − λ)Ez2

∫ τ∗
λ

0
e−ρt

ψ −
z(a∗λ)

2,t−
ρ

 a∗λ,tdN(λ)
t −

z(a∗λ)
2,t−
ρ

dN(ν)
t

+ eτ∗
λ v(0)


Since policy a∗λ is feasible when starting at z1, the first expectation on the right hand side
above is equal to v(z1; a∗λ), which is greater than v(z1); for the same reason, the second
expectation on the right hand side above is to v(z2; a∗λ), which is greater than v(z2).
This means that v(zλ) ≥ λv(z1) + (1 − λ)v(z2), i.e. v is concave (and thus continuously
differentiable almost everywhere). The option value v satisfies

(ρ + ν + λ)v(z) =
σ2

2
v′′(z) + λ min

(
v(z), v(0) + ψ − z

ρ

)
+ ν

(
v(0)− z

ρ

)
(A.5)

Noting θ the rate gap above which the borrower finds it optimal to refinance when given
the opportunity to do so, we must have

(ρ + ν)v(z) =
σ2

2
v′′(z) + ν

(
v(0)− z

ρ

)
z ≤ θ (A.6)

(ρ + ν + λ)v(z) =
σ2

2
v′′(z) + ν

(
v(0)− z

ρ

)
+ λ

(
v(0) + ψ − z

ρ

)
z ≥ θ (A.7)

Since v(z) = O(z) as z → +∞ and as z → −∞, the value function v must satisfy (4). The
constants k−, k+ must be such that v is continuously differentiable at z = θ. Moreover,
since θ > 0, it must be the case that

v(0) =
ρ + ν

ρ
k−e−η0θ
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The requirement that v be continuously differentiable at z = θ yields a system of 2 linear
equations in the 2 unknown k−, k+, with solution (using our formula for v(0)):

k− =
λ

(ρ + ν + λ) (η0 + ηλ)− ληλe−η0θ

[
ηλ

(
ψ − θ

ρ + ν

)
− 1

ρ + ν

]
k+ =

−λ

(ρ + ν + λ) (η0 + ηλ)− ληλe−η0θ

[(
1 − λe−η0θ

ρ + λ + ν

)(
1

ρ + ν

)
+ η0

(
ψ − θ

ρ + ν

)]
At z = θ, the borrower is indifferent between (a) continuing with the current mortgage,
or (b) paying the fixed cost and refinancing. This means that

v(θ) = v(0) + ψ − θ

ρ
⇒ k− =

ρ

ρ + ν
v(0) + ψ − θ

ρ + ν

But since we know v(0) as a function of k−, this yields

k− = k−e−η0θ + ψ − θ

ρ + ν

Using our formula for k−, this yields, after some algebra, the implicit equation

e−η0θ + (η0 + ϵλ) θ = 1 + (ρ + ν)ψ (η0 + ϵλ) , (A.8)

where ϵλ is defined in Proposition 2. (A.8) is solved by

θ = (ρ + ν)ψ +
1

η0 + ϵλ
+

1
η0

W
(

−η0

η0 + ϵλ
exp

{
−η0

η0 + ϵλ
[1 + (ρ + ν) (η0 + ϵλ)ψ]

})
,

with W (·) the primary branch of the Lambert-W function. Notice that ϵλ is a positive
and decreasing function of λ, converging to zero as λ → +∞. Differentiate (A.8) w.r.t. λ
to obtain

∂θ

∂λ
=

((ρ + ν)ψ − θ) ∂ϵλ
∂λ

ϵλ + η0
(
1 − e−η0θ

) > 0,

with the last inequality following from ∂ϵλ
∂λ < 0 and (ρ + ν)ψ − θ = e−η0θ−1

η0+ϵλ
< 0. Thus θ

increases with λ. Since limλ→∞ ϵλ = 0,

θ∞ := lim
λ→∞

θ = (ρ + ν)ψ +
1
η0

+
1
η0

W (− exp {− [1 + (ρ + ν) η0ψ]}) ,

which is the ADL formula. Lastly, since limλ→0 ϵλ = ∞ and W (0) = 0, we have

θ0 := lim
λ→0

θ = (ρ + ν)ψ.
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We can then perform a Taylor expansion of (A.8) around θ = 0, which allows us to obtain
an approximation θ̂ of the value θ:

η2
0

2
θ̂2 + ϵλθ̂ − (ρ + ν)(η0 + ϵλ)ψ = 0

This allows us to conclude that the approximation θ̂ is equal to

θ̂ =

√√√√ 2
η0

(
1 +

ϵλ

η0

)
(ρ + ν)ψ +

(
ϵλ

η2
0

)2

− ϵλ

η2
0

Finally, it is straightforward (but tedious) to verify that the optimal rate gap threshold
θ is identical to that derived above if one were to assume a fixed cost upon moving.
The intuition behind this result is straightforward: since there is equal probability that
the borrower moves when the mortgage is in- or out-of-the-money (given the fact that
the mortgage rate is a Brownian motion), the borrower’s refinancing strategy does not
change in the presence of fixed moving costs.

A.3 Rate gap ergodic density when mt is a Brownian motion

Proof of Proposition 3. The rate gap follows dynamics described by (A.4). This stochas-
tic process admits an ergodic density f , which satisfies the Kolmogorov-Forward equa-
tion, for z ̸= θ:

0 =
σ2

2
f ′′(z)− (ν + λ1z≥θ) f (z) (A.9)

Moreover, f is continuous at z = θ, it vanishes at z → ±∞, and it integrates to 1. Using
the constants χ0, χλ defined in Proposition 3, we can integrate (A.9) with the above
boundary conditions to derive (11). The ergodic average rate gap E [zt] is then equal to

E [zt] =
∫ +∞

−∞
z f (z)dz = θ +

χ0 − χλ

χ0χλ

Similarly, the ergodic average refinancing rate equals

lim
t→+∞

1
t

(
N(ν)

t +
∫ t

0
atdN(λ)

t

)
=
∫ +∞

−∞
(ν + λ1z≥θ) f (z)dz = ν +

(
χ0

χ0 + χλ

)
λ

Lastly, the ergodic average rate gap observed at the time of refinancing equals

lim
t→+∞

∫ t
0 zt−

(
dN(ν)

t + atdN(λ)
t

)
N(ν)

t +
∫ t

0 atdN(λ)
t

=

∫ +∞
−∞ z (ν + λ1z≥θ) f (z)dz∫ +∞
−∞ (ν + λ1z≥θ) f (z)dz

= θ
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A.4 Rational inattention

We continue to assume that the mortgage rate satisfies mt = m0 + σBt, with Bt a standard
Brownian motion. Let V be the valuation for a borrower at the time she observes the
current market rate and is not refinancing:

V(m, c) = ϕ + min
T≥0

Em

[∫ τ∧T

0
e−ρtcdt + e−ρτ1{τ≤T}V(mτ, mτ)

+e−ρT1{τ>T} min (V(mT, c); V(mT, mT) + ψ)
]

,

where τ is an exponentially distributed moving time (with parameter ν), at which the
borrower is forced to refinance. We guess the valuation function can be written V(m, c) =
ϕ + c

ρ + v(z). After some algebra, the option value v(z) solves

v(z) = min
T≥0

ν

ρ + ν

(
1 − e−(ρ+ν)T

)(
v(0) + ϕ − z

ρ

)
+ e−(ρ+ν)T

[
ϕ + E

[
min

(
v(z − σBT); v(0) + ψ − z − σBT

ρ

)]]
One can also express v in sequence form to show, using a method identical to that used
in Appendix A.2, that v is decreasing and concave in z. The optimal rate gap threshold
θ satisfies

θ

ρ
+ v(θ) = v(0) + ψ.

The optimal wait time T(z) satisfies the first order condition

(ρ + ν)v(z)− ν

(
v(0) + ϕ − z

ρ

)
= e−(ρ+ν)T(z)

dE
[
min

(
v(z − σBT); v(0) + ψ − z−σBT

ρ

)]
dT

∣∣∣∣
T=T(z)

,

in other words the flow cost of waiting (the left-hand side above) has to equal the
marginal increase in the present value of expected option payoff from waiting an in-
cremental unit of time. The state of a given borrower is (T, z), with T the time until next
observation and z the rate gap. (T, z) is a Markov process that satisfies

dTt = −dt + T(zt)1{Tt−=0}

dzt = −σdBt − zt−
(

dN(ν)
t + 1{Tt−=0}1{zt−≥θ}

)
(T, z) admits an ergodic density that can be computed via simulation, allowing us to
derive various moments — in particular, E [T(zt)], the ergodic average attention delay.
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